

A new strategy for enhancing hydrogen peroxide utilization in photocatalytic reactions

December 9 2022

Photocatalysts and photocatalytic performance. **a** TEM image of TiO₂{001}. **b** TEM, (**c**) HAADF and (**d**) element mapping images of TiO₂{001}-C₃N₄-0.1. **e** H₂O₂ decomposition rate, H₂O₂ decomposition and O₂ selectivity of photocatalytic H₂O₂ decomposition over TiO₂{001} and TiO₂{001}-C₃N₄-0.1 under the reaction condition of 165 μ L H₂O₂ + 20 mL H₂O in Ar or 10%O₂/Ar. CH₄ conversion rate (r_{CH4}), yield(Y_{HCOOH}) and selectivity (S_{HCOOH}) of formic acid, selectivity of oxygenates (S_{Oxygenates}), and H₂O₂ utilization efficiency (E_{H2O2}) of photocatalytic CH₄ conversion over (**f**) 20 mg TiO₂{001} under the

reaction condition of 8%CH₄ + 92%Ar + 110μ L H₂O₂ + 20μ L H₂O or 8%CH₄ + 1.6%O₂ + 90.4%Ar + 110μ L H₂O₂ + 20μ L H₂O for 5 h and over (**g**) 20 mg TiO₂{001}-C₃N₄-0.1 under the reaction condition of 8%CH₄ + 92%Ar + 165μ L H₂O₂ + 20μ L H₂O or 8%CH₄ + 4%O₂ + 88%Ar + 165μ L H₂O₂ + 20μ L H₂O or 8%CH₄ + 4%O₂ + 88%Ar + 165μ L H₂O₂ + 20μ L H₂O for 8 h at 298 K. Credit: *Nature Communications* (2022). DOI: 10.1038/s41467-022-34563-4

Recently, a research team led by Prof. Huang Weixin from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) realized the production of oxygenated chemicals from methane and H_2O_2 with oxide semiconductor as photocatalyst, revealed a new strategy for improving H_2O_2 utilization and photocatalytic conversion efficiency from methane to oxygenates, and studied the photocatalytic activity and selectivity by tuning TiO₂ facets.

This work was published in Nature Communications.

Methane has been increasingly considered as a possible carbon resource, but it is a major challenge to convert methane to value-added chemicals with both high activity and selectivity.

 H_2O_2 is a common oxidant that could photocatalytically convert liquidphase methane to value-added chemicals. It reacts with photogenerated electrons and produce ·OH radicals or ·OOH radicals, which is an effective activation method. Unfortunately, H_2O_2 is subject to side reactions with photogenerated holes and tends to convert itself to O_2 , reducing its utilization.

In this study, the researchers aerated O_2 into the semiconductor <u>photocatalytic</u> reaction system containing methane and H_2O_2 , and found that H_2O_2 utilization was enhanced. They discovered that the adsorption

of O_2 onto the surface of TiO₂ inhibited the <u>adsorption</u> of H₂O₂, which suppressed side reactions.

In addition, the researchers observed that photocatalytic activity and selectivity was determined by TiO_2 facets. In virtue of theoretical calculation, they discovered that it was the desorption energy of different products on different TiO₂ facets that accounted for the different catalytic selectivity. For example, CH₃OOH had low desorption energy on TiO₂{101}, thus it was the only liquid-phase product of TiO₂{101}-C₃N₄ composite.

This work offered a new strategy for improving H_2O_2 utilization and conversion efficiency in the photocatalytic conversion from <u>methane</u> to oxygenates. It also manifested the role that the catalyst facets played during photocatalytic reactions.

More information: Xiao Sun et al, Molecular oxygen enhances H2O2 utilization for the photocatalytic conversion of methane to liquid-phase oxygenates, *Nature Communications* (2022). DOI: 10.1038/s41467-022-34563-4

Provided by Chinese Academy of Sciences

Citation: A new strategy for enhancing hydrogen peroxide utilization in photocatalytic reactions (2022, December 9) retrieved 25 April 2024 from <u>https://phys.org/news/2022-12-strategy-hydrogen-peroxide-photocatalytic-reactions.html</u>

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.