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Using machine learning to infer rules for
designing complex mechanical metamaterials

November 25 2022, by Ingrid Fadelli

Two combinatorial mechanical metamaterials designed in such a way that the
letters M and L bulge out in the front when being squeezed between two plates
(top and bottom). Designing novel metamaterials such as this is made easy by Al
Credit: Daan Haver and Yao Du, University of Amsterdam

Mechanical metamaterials are sophisticated artificial structures with
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mechanical properties that are driven by their structure, rather than their
composition. While these structures have proved to be very promising
for the development of new technologies designing them can be both
challenging and time-consuming.

Researchers at University of Amsterdam, AMOLF, and Utrecht
University have recently demonstrated the potential of convolutional
neural networks (CNNs), a class of machine learning algorithms, for
designing complex mechanical metamaterials. Their paper, published in
Physical Review Letters, specifically introduces two-different CNN-
based methods that can derive and capture the subtle combinatorial rules
underpinning the design of mechanical metamaterials.

"Our recent study can be considered a continuation of the combinatorial
design approach introduced in a previous paper, which can be applied to
more complicated building blocks," Ryan van Mastrigt, one of the
researchers who carried out the study, told Phys.org. "Around the time
when [ started working on this study, Aleksi Bossart and David Dykstra
were working on a combinatorial metamaterial that is able to host
multiple functionalities, meaning a material that can deform in multiple
distinct ways depending on how one actuates it."

As part of their previous research, van Mastrigt and his colleagues tried
to distill the rules underpinning the successful design of complex
metamaterials. They soon realized that this was far from an easy task, as
the "building blocks" that make up these structures can be deformed and
arranged in countless different ways.

Previous studies showed that when metamaterials have small unit cell-
sizes (i.e., a limited amount of "building blocks"), simulating all the ways
in which these blocks can be deformed and arranged using conventional
physics simulation tools is possible. As these unit cell-sizes become
larger, however, the task becomes extremely challenging or impossible.
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"Since we were unable to reason about any underlying design rules and
conventional tools failed at allowing us to explore larger unit cell designs
in an efficient way, we decided to consider machine learning as a serious
option," van Mastrigt explained. "Thus, the main objective of our study
became to identify a machine learning tool that would allow us to
explore the design space much quicker than before. I think that we
succeeded and even exceeded our own expectations with our findings."

To successfully train CNNs to tackle the design of complex
metamaterials, van Mastrigt and his colleagues initially had to overcome
a series of challenges. Firstly, they had to find a way to effectively
represent their metamaterial designs.

"We tried a couple of approaches and finally settled on what we refer to
as the pixel representation,” van Mastrigt explained. "This representation
encodes the orientation of each building block in a clear visual manner,
such that the classification problem is cast to a visual pattern detection
problem, which is exactly what CNNs are good at."

Subsequently, the researchers had to devise methods that considered the
huge metamaterials class-imbalance. In other words, as there are
currently many known metamaterials belonging to class I, but far fewer
belonging to class C (the class that the researchers are interested in),
training CNNs to infer combinatorial rules for these different classes
might entail different steps.

To tackle this challenge, van Mastrigt and his colleagues devised two
different CNN-based techniques. These two techniques are applicable to
different metamaterial classes and classification problems.

"In the case of metamaterial M2, we tried to create a training set that is
class-balanced," van Mastrigt said. "We did this using naive

undersampling (i.e., throwing a lot of class I examples away) and
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combine this with symmetries which we know some designs have, such
as translational and rotational symmetry, to create additional class C
designs.

"This approach thus requires some domain knowledge. For metamaterial
M1, on the other hand, we added a reweight term to the loss function
such that the rare class C designs weigh more heavily during training,
where the key idea is that this reweighting of class C cancels out with the
much larger number of class I designs in the training set. This approach
requires no domain knowledge."

In initial tests, both these CNN-based methods for deriving the
combinatorial rules behind the design of mechanical metamaterials
achieved highly promising results. The team found that they each
performed better on different tasks, depending on the initial dataset used
and known (or unknown) design symmetries.

"We showed just how extraordinarily good these networks are at solving
complex combinatorial problems," van Mastrigt said. "This was really
surprising for us, since all other conventional (statistical) tools we as
physicists commonly use fail for these types of problems. We showed
that neural networks really do more than just interpolate the design space
based on the examples you give them, as they appear to be somehow
biased to find a structure (which comes from rules) in this design space
that generalizes extremely well."

The recent findings gathered by this team of researchers could have far
reaching implications for the design of metamaterials. While the
networks they trained were so far applied to a few metamaterial
structures, they could eventually also be used to create far more complex
designs, which would be incredibly difficult to tackle using conventional
physics simulation tools.
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The work by van Mastrigt and his colleagues also highlights the huge
value of CNNss for tackling combinatorial problems, optimization tasks
that entail composing an "optimal object" or deriving an "optimal
solution" that satisfies all constraints in a set, in instances where there are
numerous variables at play. As combinatorial problems are common in
numerous scientific fields, this paper could promote the use of CNNSs in
other research and development settings.

The researchers showed that even if machine learning is typically a
"black box" approach (i.e., it does not always allow researchers to view
the processes behind a given prediction or outcome), it can still be very
valuable for exploring the design space for metamaterials, and
potentially other materials, objects, or chemical substances. This could
in turn potentially help to reason about and better understand the
complex rules underlying effective designs.

"In our next studies, we will turn our attention to inverse design," van
Mastrigt added. "The current tool already helps us enormously to reduce
the design space to find suitable (class C) designs, but it does not find us
the best design for the task we have in mind. We are now considering
machine learning methods that will help us find extremely rare designs
that have the properties that we want, ideally even when no examples of
such designs are shown to the machine learning method beforehand.

"This is a very hard problem, but after our recent study, we believe, that
neural networks will allow us to successfully tackle it."
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