Keeping bulk magnesium diboride superconducting at higher current densities September 1 2022 The low and high field critical current density of bulk MgB₂ superconductors can be improved by a combination of optimum processing temperature and controlled addition (1Wt%) of Dy_2O_3 and amorphous nanometer-sized boron precursor, finds a new study by researchers from SIT, Japan. Credit: Muralidhar Miryala from SIT, Japan Superconductors—wondrous materials whose resistance drop to zero below a critical temperature—show much promise to meet the growing energy demand of the global population. With potential applications in magnetic resonance imaging, nuclear magnetic resonance, magnetic drug delivery, fault current limiters, transportation (Maglev trains), and cables, there is much motivation for discovering and developing high-temperature superconductors. In this regard, magnesium diboride (MgB₂), a high-temperature superconductor, has received much attention owing to its low cost, light weight, and easy fabricability. It is posited that MgB₂ has the potential to replace conventional niobium-based superconductors in practical engineering applications. However, bulk MgB₂ suffers from the long-standing problem of an insufficient critical <u>current density</u> (the current density above which it is no longer superconducting) at high magnetic fields. This, in turn, greatly limits its large-scale applications. To address this issue, researchers have tried adding external elements in controlled quantities, a process known as "doping," during the synthesis of bulk MgB₂, with little to no success. As Prof. Muralidhar Miryala from Shibaura Institute of Technology (SIT), Japan states, "So far, researchers have tried improving the critical current density of bulk MgB₂ by doping with silicon carbide, other carbon sources, silver, transition metals etc. However, further improvement of the critical current density of MgB₂ is crucial for several industrial applications." Not all hope is lost, however. Prof. Miryala's team managed to show that sintering MgB₂ at around 800°C for 3 hours in an argon environment can lead to a superior superconducting performance. This was linked to the formation of an optimum microstructure at such processing conditions, which was revealed to play a major role in the superconductivity of MgB₂. In a recent study published first on July 7, 2022, in *Advanced Engineering Materials*, Prof. Miryala's team made another breakthrough. They found that combining optimum sintering conditions with controlled addition of nanometer-sized amorphous boron and dysprosium oxide (Dy_2O_3) enhanced the high-field critical current density (J_c) of MgB_2 as well as its self-field. The study included Prof. M.S. Ramachandra Rao of Indian Institute of Technology Madras (IITM), India, who provided support for the global project based learning (gPBL) program at IITM, and contributions from K. Kitamoto, A. Sai Srikanth, and M. Masato from SIT, D. Dhruba from IITM. What was remarkable about Dy₂O₃ as a dopant was that it had almost no effect on the superconducting transition temperature of MgB₂ (which remained stable at around 38 K). Additionally, Dy₂O₃ addition led to the formation of DyB₄ nanoparticles, enhancing further flux pinning at MgB₂ nano grain boundaries. Further, use of nano boron precursor helped to create MgB₂ nano grains with exceptional grain-boundary flux pinning. As a result, a superior critical current density was achieved. Using amorphous nanoboron as the starting ingredient, the team quantified the precise amount of $\mathrm{Dy_2O_3}$ that needed to be added to significantly improve J_c in bulk $\mathrm{MgB_2}$ superconductors. By analyzing the structure and composition with techniques such as X-ray diffraction and Raman spectroscopy, and the superconducting properties of doped bulk MgB_2 , they found the ideal Dy_2O_3 doping range to be 0.5-1.5%. With these findings, the team is excited about the future prospects of MgB_2 . "These results demonstrate the potential of Dy_2O_3 doping alongside nanoboron precursors in realizing bulk MgB_2 for practical superconducting applications," says Prof. Miryala. "Our research adds to the existing literature on ways to improve J_c and could pave the way for real-life bulk superconductors, which are a beacon for sustainable technologies." **More information:** Muralidhar Miryala et al, Enhancing Critical Current Density of Bulk MgB 2 via Nanoscale Boron and Dy 2 O 3 Doping, *Advanced Engineering Materials* (2022). DOI: 10.1002/adem.202200487 ## Provided by Shibaura Institute of Technology Citation: Keeping bulk magnesium diboride superconducting at higher current densities (2022, September 1) retrieved 18 June 2024 from https://phys.org/news/2022-09-bulk-magnesium-diboride-superconducting-higher.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.