Defining plasma dose for potential future cancer treatments

Defining plasma dose for potential future cancer treatments
Plasma-activated medium for cancer treatment. Credit: He Cheng, Jingyi Luo, Ke Song, Feng Zhao, Dawei Liu, Lanlan Nie, and Xinpei Lu

Chinese researchers may have found a new approach to treat cancer by using a plasma treatment to induce apoptosis, the death of cancer cells, without any obvious side effect to normal cells.

The catch is that while a -activated medium (PAM) can be treated as a drug, there is always a dose-effect relationship. And within the plasma community, many researchers are defining the plasma dose as either the time or the power deposited to plasma per surface.

In Physics of Plasmas, the scientists' definition of a plasma dose, the equivalent total oxidation potential (ETOP), can be used for PAM to reveal the plasma dose-response relationship for different cell types. ETOP is based on the oxidation potential of reactive oxygen and nitrogen species.

Plasma treatment time and the power deposited to plasma per surface "are not the right choices to define the plasma dose," said Xinpei Lu, from Huazhong University of Science and Technology. "The essential part of the plasma treatment is the reactive species delivered to PAM. The definition of the plasma dose we present is based on this reactive species concentration."

The goal of plasma medicine is to exploit a differentiated interaction of specific plasma components with specific elements or functionalities of living cells to control and, ideally, normalize . One critical constraint on the path from the laboratory bench to bedside is the dose-response relationships of plasma on biological objects.

"Therefore, the determination of plasma dose is of critical biological importance for plasma's ," said Lu. "For future plasma therapies, such as , our results suggest ETOP may be a well-defined strategy to evaluate its effects, because it provides the basis for significant lethality differences between normal and cancer cells."

A plasma dose should be representative of the plasma's contribution to the biological effect. In , this dose is most commonly measured by compounds in medicine for therapeutic purposes.

Although a broad spectrum of biological effects of plasma has been found and most distinctive plasma agents have been detected, two questions remain. How are these elements integrated into the plasma dose? How can we study the plasma dose-effect relationship?

ETOP is a preliminary attempt to answer these questions. Although it was already validated by a previous study done by the same team of researchers, whether ETOP is applicable for PAM was unclear. They note the applicability of ETOP or PAM, as well as corresponding plasma dose-response relationships, should be further studied.

"To our surprise, through data analysis, a good fit between and ETOP was found," said Lu. "This suggests ETOP as a plasma dose is also suitable for PAM. We also found ETOP can be used to maximize the lethality difference between normal/cancer . Further validation by the published literature again indicates ETOP may provide a well-defined strategy to evaluate the selectivity of PAM treatment on different cell types."

The article is titled "On the dose of plasma medicine: Plasma-activated medium (PAM) and its effect on cell viability."

More information: On the dose of plasma medicine: Plasma-activated medium (PAM) and its effect on cell viability, Physics of Plasmas (2022). DOI: 10.1063/5.0089357

Journal information: Physics of Plasmas

Citation: Defining plasma dose for potential future cancer treatments (2022, June 28) retrieved 28 May 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Valproic acid plasma levels down with concomitant meropenem


Feedback to editors