

Nature of five-coordinated aluminum on γ-Al2O3 surface

June 1 2022, by Li Yuan

Graphical abstract. Credit: *ACS Central Science* (2022). DOI: 10.1021/acscentsci.1c01497

 γ -Al₂O₃, an important catalyst and catalyst support, is widely used in various industrial applications. The five-coordinated aluminum, or Al(V), on the surface of γ -Al₂O₃ can affect the catalytic performances of γ -Al₂O₃.

Recently, a research team led by Prof. Hou Guangjin from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS), in collaboration with Dr. Gan Zhehong from the National High Magnetic Field Laboratory, for the first time observed the structure of Al(V) on the surface of γ -Al₂O₃ using ultrahigh-field (1.5GHz) solid-state Nuclear Magnetic Resonance (NMR) spectroscopy.

This study was published in ACS Central Science on May 23.

The researchers investigated the structural properties of commercial γ -Al₂O₃ and amorphous alumina nanosheets (Al₂O₃-NS) rich in Al(V) by ultrahigh-field multinuclear and multi-dimensional Magic Angle Spinning (MAS) NMR.

They analyzed the <u>aluminum</u> species in both aluminas and found the flexible structural features on the surface of Al_2O_3 -NS. And they demonstrated the <u>hydroxyl groups</u> on the surface of γ -Al₂O₃ with close spatial proximity that were able to be removed under high-temperature dehydration, resulting in surface structure reconstruction.

Moreover, by using ultrahigh-field ${}^{27}Al-{}^{27}Al$ double-quantum NMR, the researchers for the first time revealed that most Al(V) species tended to aggregate into Al(V) domains on the surface of γ -Al₂O₃ like Al₂O₃-NS, rather than tetragonal pyramid coordination on (100) surface previously predicted from <u>theoretical models</u>.

"These new insights into <u>surface</u> Al(V) species would help us to better understand the structure and function relationship of γ -Al₂O₃ when used as catalysts and <u>catalyst</u> supports," said Prof. Hou.

More information: Zhenchao Zhao et al, Nature of Five-Coordinated Al in γ-Al2O3 Revealed by Ultra-High-Field Solid-State NMR, *ACS Central Science* (2022). DOI: 10.1021/acscentsci.1c01497

Provided by Chinese Academy of Sciences

Citation: Nature of five-coordinated aluminum on γ-Al2O3 surface (2022, June 1) retrieved 25 April 2024 from <u>https://phys.org/news/2022-06-nature-five-coordinated-aluminum-al2o3-surface.html</u>

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.