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Where once were black boxes, a new
statistical tool illuminates

June 22 2022

How do you figure out how to alter a gene so that it makes a usefully different
protein? The job might be imagined as interacting with a complex machine (at
left) that sports a vast control panel filled with thousands of unlabeled switches,
which all affect the device's output somehow. A new tool called LANTERN
figures out which sets of switches—rungs on the gene's DNA ladder—have the
largest effect on a given attribute of the protein. It also summarizes how the user
can tweak that attribute to achieve a desired effect, essentially transmuting the
many switches on our machine's panel into another machine (at right) with just a
few simple dials. Credit: B. Hayes / NIST
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Researchers at the National Institute of Standards and Technology
(NIST) have developed a new statistical tool that they have used to
predict protein function. Not only could it help with the difficult job of
altering proteins in practically useful ways, but it also works by methods
that are fully interpretable—an advantage over the conventional artificial
intelligence (Al) that has aided with protein engineering in the past.

The new tool, called LANTERN, could prove useful in work ranging
from producing biofuels to improving crops to developing new disease
treatments. Proteins, as building blocks of biology, are a key element in
all these tasks. But while it is comparatively easy to make changes to the
strand of DNA that serves as the blueprint for a given protein, it remains
challenging to determine which specific base pairs—rungs on the DNA
ladder—are the keys to producing a desired effect. Finding these keys
has been the purview of Al built of deep neural networks (DNN5s),
which, though effective, are notoriously opaque to human understanding.

Described in a new paper published in the Proceedings of the National
Academy of Sciences, LANTERN shows the ability to predict the genetic
edits needed to create useful differences in three different proteins. One
is the spike-shaped protein from the surface of the SARS-CoV-2 virus
that causes COVID-19; understanding how changes in the DNA can alter
this spike protein might help epidemiologists predict the future of the
pandemic. The other two are well-known lab workhorses: the Lacl
protein from the E. coli bacterium and the green fluorescent protein
(GFP) used as a marker in biology experiments. Selecting these three
subjects allowed the NIST team to show not only that their tool works,
but also that its results are interpretable—an important characteristic for
industry, which needs predictive methods that help with understanding
of the underlying system.

"We have an approach that is fully interpretable and that also has no loss
in predictive power," said Peter Tonner, a statistician and computational
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biologist at NIST and LANTERN's main developer. "There's a
widespread assumption that if you want one of those things you can't
have the other. We've shown that sometimes, you can have both."

The problem the NIST team is tackling might be imagined as interacting
with a complex machine that sports a vast control panel filled with
thousands of unlabeled switches: The device is a gene, a strand of DNA
that encodes a protein; the switches are base pairs on the strand. The
switches all affect the device's output somehow. If your job is to make
the machine work differently in a specific way, which switches should
you flip?

Because the answer might require changes to multiple base pairs,
scientists have to flip some combination of them, measure the result,
then choose a new combination and measure again. The number of
permutations is daunting.

"The number of potential combinations can be greater than the number
of atoms in the universe," Tonner said. "You could never measure all the
possibilities. It's a ridiculously large number."

Because of the sheer quantity of data involved, DNNs have been tasked
with sorting through a sampling of data and predicting which base pairs
need to be flipped. At this, they have proved successful—as long as you
don't ask for an explanation of how they get their answers. They are
often described as "black boxes" because their inner workings are
inscrutable.

"It 1s really difficult to understand how DNNs make their predictions,"
said NIST physicist David Ross, one of the paper's co-authors. "And
that's a big problem if you want to use those predictions to engineer
something new."
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LANTERN, on the other hand, is explicitly designed to be
understandable. Part of its explainability stems from its use of
interpretable parameters to represent the data it analyzes. Rather than
allowing the number of these parameters to grow extraordinarily large
and often inscrutable, as is the case with DNNs, each parameter in
LANTERN's calculations has a purpose that is meant to be intuitive,
helping users understand what these parameters mean and how they

influence LANTERN's predictions.

The LANTERN model represents protein mutations using vectors,
widely used mathematical tools often portrayed visually as arrows. Each
arrow has two properties: Its direction implies the effect of the mutation,
while its length represents how strong that effect is. When two proteins
have vectors that point in the same direction, LANTERN indicates that
the proteins have similar function.

These vectors' directions often map onto biological mechanisms. For
example, LANTERN learned a direction associated with protein folding
in all three of the datasets the team studied. (Folding plays a critical role
in how a protein functions, so identifying this factor across datasets was
an indication that the model functions as intended.) When making
predictions, LANTERN just adds these vectors together—a method that
users can trace when examining its predictions.

Other labs had already used DNNs to make predictions about what
switch-flips would make useful changes to the three subject proteins, so
the NIST team decided to pit LANTERN against the DNNs' results. The
new approach was not merely good enough; according to the team, it
achieves a new state of the art in predictive accuracy for this type of
problem.

"LANTERN equaled or outperformed nearly all alternative approaches
with respect to prediction accuracy," Tonner said. "It outperforms all
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other approaches in predicting changes to Lacl, and it has comparable
predictive accuracy for GFP for all except one. For SARS-CoV-2, it has
higher predictive accuracy than all alternatives other than one type of
DNN, which matched LANTERN's accuracy but didn't beat it."

LANTERN figures out which sets of switches have the largest effect on
a given attribute of the protein—its folding stability, for example—and
summarizes how the user can tweak that attribute to achieve a desired
effect. In a way, LANTERN transmutes the many switches on our
machine's panel into a few simple dials.

"It reduces thousands of switches to maybe five little dials you can turn,"
Ross said. "It tells you the first dial will have a big effect, the second will
have a different effect but smaller, the third even smaller, and so on. So
as an engineer it tells me I can focus on the first and second dial to get
the outcome I need. LANTERN lays all this out for me, and it's
incredibly helpful."

Rajmonda Caceres, a scientist at MIT's Lincoln Laboratory who is
familiar with the method behind LANTERN, said she values the tool's
interpretability.

"There are not a lot of AI methods applied to biology applications where
they explicitly design for interpretability,” said Caceres, who is not
affiliated with the NIST study. "When biologists see the results, they can
see what mutation is contributing to the change in the protein. This level
of interpretation allows for more interdisciplinary research, because
biologists can understand how the algorithm is learning and they can
generate further insights about the biological system under study."

Tonner said that while he is pleased with the results, LANTERN is not a

panacea for Al's explainability problem. Exploring alternatives to DNNs
more widely would benefit the entire effort to create explainable,
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trustworthy Al, he said.

"In the context of predicting genetic effects on protein function,
LANTERN is the first example of something that rivals DNNs in
predictive power while still being fully interpretable,” Tonner said. "It
provides a specific solution to a specific problem. We hope that it might
apply to others, and that this work inspires the development of new
interpretable approaches. We don't want predictive Al to remain a black
box."

More information: Peter D. Tonner et al, Interpretable modeling of
genotype—phenotype landscapes with state-of-the-art predictive power,
Proceedings of the National Academy of Sciences (2022). DOI:
10.1073/pnas.2114021119

Provided by National Institute of Standards and Technology

Citation: Where once were black boxes, a new statistical tool illuminates (2022, June 22)
retrieved 24 May 2024 from https://phys.org/news/2022-06-black-statistical-tool-
illuminates.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

6/6


https://phys.org/tags/protein+function/
https://dx.doi.org/10.1073/pnas.2114021119
https://dx.doi.org/10.1073/pnas.2114021119
https://phys.org/news/2022-06-black-statistical-tool-illuminates.html
https://phys.org/news/2022-06-black-statistical-tool-illuminates.html
http://www.tcpdf.org

