Uncovering the secret behind the behavior of unique superconducting materials

Physicists uncover the secret behind the behavior of unique superconducting materials
Crystal structures of a copper-based superconductor. Credit: Zhenglu Li, Berkeley Lab

Over the last 35 years, scientists have investigated a special type of materials called superconductors. When cooled to the correct temperatures, these materials allow electricity to flow without resistance. One team is researching superconductors using the Summit supercomputer. The team found that negative particles in the superconductors interact strongly with the smallest units of sound in the materials. This interaction leads to sudden changes in the materials' behavior. This interaction is at the root of understanding how a certain type of copper-based superconductor works.

The team wanted to find out how the interactions between particles in the material change when they are in a crowded space with lots of other interacting particles. They hope that the results will help them better understand a unique class of superconducting materials based on copper. These materials will be more efficient than typical superconductors, thanks to their ability to work at relatively warm temperatures. This work could eventually lead to extremely efficient future electronic devices.

Researchers modeled the complicated interactions between negatively charged electron particles in a material and the interactions between electrons and . Phonons are the smallest units of vibrational energy in a material. These models involved millions of particle states, with each state comprising distinct characteristics. The result is one of the team's largest calculations to date of copper-based superconductors. The method gives the researchers a framework to study the so-called "self-energy" of electrons. The results could help the team get closer to understanding the mechanisms of a unique family of copper-based superconductors, which would be more efficient than typical copper-based superconductors.

The study is published in Physical Review Letters.

Explore further

Transforming common insulators into superior superconductors

More information: Zhenglu Li et al, Unmasking the Origin of Kinks in the Photoemission Spectra of Cuprate Superconductors, Physical Review Letters (2021). DOI: 10.1103/PhysRevLett.126.146401
Journal information: Physical Review Letters

Citation: Uncovering the secret behind the behavior of unique superconducting materials (2022, March 7) retrieved 1 July 2022 from https://phys.org/news/2022-03-uncovering-secret-behavior-unique-superconducting.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors