
 

Scientists use Summit supercomputer, deep
learning to predict protein functions at
genome scale
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This protein drives key processes for sulfide use in many microorganisms that
produce methane, including Thermosipho melanesiensis. Researchers used
supercomputing and deep learning tools to predict its structure, which has eluded
experimental methods such as crystallography. Credit: Ada Sedova/ORNL, U.S.
Dept. of Energy
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A team of scientists led by the Department of Energy's Oak Ridge
National Laboratory and the Georgia Institute of Technology is using
supercomputing and revolutionary deep learning tools to predict the
structures and roles of thousands of proteins with unknown functions.

Their deep learning-driven approaches infer protein structure and
function from DNA sequences, accelerating new discoveries that could
inform advances in biotechnology, biosecurity, bioenergy and solutions
for environmental pollution and climate change.

Researchers are using the Summit supercomputer at ORNL and tools
developed by Google's DeepMind and Georgia Tech to speed the
accurate identification of protein structures and functions across the
entire genomes of organisms. The team recently published details of the
high-performance computing toolkit and its deployment on Summit.

These powerful computational tools are a significant leap toward
resolving a grand challenge in biology: translating genetic code into
meaningful functions.

Proteins are a key component of solving this challenge. They are also
central to resolving many scientific questions about the health of
humans, ecosystems and the planet. As the workhorses of the cell,
proteins drive nearly every process necessary for life—from metabolism
to immune defense to communication between cells.

"Structure determines function" is the adage when it comes to proteins;
their complex 3D shapes guide how they interact with other proteins to
do the work of the cell. Understanding a protein's structure and function
based on lengthy strings of nucleotides—written as the letters A, C, T
and G—that make up DNA has long been a bottleneck in the life
sciences as researchers relied on educated guesses and painstaking
laboratory experiments to validate structures.
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With advances in DNA sequencing technology, data are available for
about 350 million protein sequences—a number that continues to climb.
Because of the need for extensive experimental work to determine three
dimensional structures, scientists have only solved the structures for
about 170,000 of those proteins. This is a tremendous gap.

"We're now dealing with the amount of data that astrophysicists deal
with, all because of the genome sequencing revolution," said ORNL
researcher Ada Sedova. "We want to be able to use high-performance
computing to take that sequencing data and come up with useful
inferences to narrow the field for experiments. We want to quickly
answer questions such as 'what does this protein do, and how does it
affect the cell? How can we harness proteins to achieve goals such as
making needed chemicals, medicines and sustainable fuels, or to
engineer organisms that can help mitigate the effects of climate
change?'"

The research team is focusing on organisms critical to DOE missions.
They have modeled the full proteomes—all the proteins coded in an
organism's genome—for four microbes, each with approximately 5,000
proteins. Two of these microbes have been found to generate important
materials for manufacturing plastics. The other two are known to break
down and transform metals. The structural data can inform new
advances in synthetic biology and strategies to reduce the spread of
contaminants such as mercury in the environment.

The team also generated models of the 24,000 proteins at work in
sphagnum moss. Sphagnum plays a critical role in storing vast amounts
of carbon in peat bogs, which hold more carbon than all the world's
forests. These data can help scientists pinpoint which genes are most
important in enhancing sphagnum's ability to sequester carbon and
withstand climate change.
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Speeding scientific discovery

In search of the genes that enable sphagnum moss to tolerate rising
temperatures, ORNL scientists start by comparing its DNA sequences to
the model organism Arabidopsis, a thoroughly investigated plant species
in the mustard family.

"Sphagnum moss is about 515 million years diverged from that model,"
said Bryan Piatkowski, a biologist and ORNL Liane B. Russell Fellow.
"Even for plants more closely related to Arabidopsis, we don't have a lot
of empirical evidence for how these proteins behave. There is only so
much we can infer about function from comparing the nucleotide
sequences with the model."

Being able to see the structures of proteins adds another layer that can
help scientists home in on the most promising gene candidates for
experiments.

Piatkowski, for instance, has been studying moss populations from
Maine to Florida with the aim of identifying differences in their genes
that could be adaptive to climate. He has a long list of genes that might
regulate heat tolerance. Some of the gene sequences are only different
by one nucleotide, or in the language of the genetic code, by a single
letter.

"These protein structures will help us look for whether these nucleotide
changes cause changes to the protein function and if so, how? Do those
protein changes end up helping plants survive in extreme temperatures?"
Piatkowski said.

Looking for similarities in sequences to determine function is only part
of the challenge. DNA sequences are translated into the amino acids that
make up proteins. Through evolution, some of the sequences can mutate
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over time, replacing one amino acid with another that has similar
properties. These changes do not always cause differences in function.

"You could have proteins with very different sequences—less than 20%
sequence match—and get the same structure and possibly the same
function," Sedova said. "Computational tools that only compare
sequences can fail to find two proteins with very similar structures."

Until recently, scientists have not had tools that can reliably predict
protein structure based on genetic sequences. Applying these new deep
learning tools is a game changer.

Though protein structure and function will still need confirmation via
physical experiments and methods such as X-ray crystallography, deep
learning is shifting the paradigm by quickly narrowing the vast field of
candidate genes to the most interesting few for further study.

Revolutionary tools

One of the tools in the deep learning pipeline is called Sequence
Alignments from deep-Learning of Structural Alignments, or SAdLSA.
Developed by collaborators Mu Gao and Jeffrey Skolnick at Georgia
Tech, the computational tool is trained in a similar way as other deep
learning models that predict protein structure. SAdLSA has the
capability to compare sequences by implicitly understanding the protein
structure, even if the sequences only share 10% similarity.

"SAdLSA can detect distantly related proteins that may or may not have
the same function," said Jerry Parks, ORNL computational chemist and
group leader. "Combine that with AlphaFold, which provides a 3D
structural model of the protein, and you can analyze the active site to
determine which amino acids are doing the chemistry and how they
contribute to the function."
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DeepMind's tool, AlphaFold 2, demonstrated accuracy approaching that
of X-ray crystallography in determining the structures of unknown
proteins in the 2020 Critical Assessment of protein Structure Prediction,
or CASP, competition. In this worldwide biennial experiment, organizers
use unpublished protein structures that have been solved and validated to
gauge the success of state-of-the-art software programs in predicting 
protein structure.

AlphaFold 2 is the first and only program to achieve this level of
accuracy since CASP began in 1994. As a bonus, it can also predict
protein-protein interactions. This is important as proteins rarely work in
isolation.

"I've used AlphaFold to generate models of protein complexes, and it
works phenomenally well," Parks said. "It predicts not only the structure
of the individual proteins but also how they interact with each other."

With AlphaFold's success, the European Bioinformatics Institute, or
EBI, has partnered with them to model over 100 million
proteins—starting with model organisms and those with applications for
medicine and human health.

ORNL researchers and their collaborators are complementing EBI's
efforts by focusing on organisms that are critical to DOE missions. They
are working to make the toolkit available to other users on Summit and
to share the thousands of protein structures they've modeled as
downloadable datasets to facilitate science.

"This is a technology that is difficult for many research groups to just
spin up," Sedova said. "We hope to make it more accessible now that
we've formatted it for Summit."

Using AlphaFold 2, with its many software modules and 1.5 terabyte

6/8

https://phys.org/tags/protein+structure/
https://phys.org/tags/protein/


 

database, requires significant amounts of memory and many powerful
parallel processing units. Running it on Summit was a multi-step process
that required a team of experts at the Oak Ridge Leadership Computing
Facility, a DOE Office of Science user facility.

ORNL's Ryan Prout, Subil Abraham, Nicholas Quentin Haas, Wael
Elwasif and Mark Coletti were critical to the implementation process,
which relied in part on a unique capability called a Singularity container
that was originally developed by Lawrence Berkeley National
Laboratory. Mu Gao contributed by deconstructing DeepMind's
AlphaFold 2 workflow so it could make efficient use of the OLCF
resources, including Summit and the Andes system.

The work will evolve as the tools change, including the advancement to
exascale computing with the Frontier system being built at ORNL,
expected to exceed a quintillion, or 1018, calculations per second. Sedova
is excited about the possibilities.

"With these kinds of tools in our tool belt that are both structure-based
and deep learning-based, this resource can help give us information
about these proteins of unknown function—sequences that have no
matches to other sequences in the entire repository of known proteins,"
Sedova said. "This unlocks a lot of new knowledge and potential to
address national priorities through bioengineering. For instance, there
are potentially many enzymes with useful functions that have not yet
been discovered."

  More information: Mu Gao et al, High-Performance Deep Learning
Toolbox for Genome-Scale Prediction of Protein Structure and
Function, 2021 IEEE/ACM Workshop on Machine Learning in High
Performance Computing Environments (MLHPC) (2021). DOI:
10.1109/MLHPC54614.2021.00010
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