Surface science methodology reveals relaxation and failure mechanisms of energy storage devices

Surface science methodology reveals relaxation and failure mechanisms of energy storage devices
Graphical abstract. Credit: DOI: 10.1021/jacs.1c09429

Long cycle life and high safety are required for energy storage devices (ESDs) in their large-scale applications. Therefore, it's important to explore both the operating and failure mechanisms of ESDs.

Previous characterization techniques such as X-ray diffraction (XRD), (TEM), X-ray spectroscopy and topography, and (NMR) were based on bulk regions of electrodes or electrolytes, and they overlooked the critical surface/interface behaviors that govern the operation and failure in ESDs.

Recently, a research team led by Prof. Fu Qiang from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) revealed the atmosphere-dependent and failure mechanisms of ESDs by in situ surface science methodology.

The results were published in Journal of the American Chemical Society on Oct. 13.

The researchers visualized atmosphere-dependent relaxation and failure processes in ESDs by in situ Raman, X-Ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).

They found that for aluminum ion battery (AIB), the relaxation effects of the graphite in anhydrous atmospheres were manifested by recoverable stage-structure change and electronic relaxation. The mechanism could be described as the redistribution of the anion/cation pairs within graphite electrode by in situ XPS.

Once exposure to hydrous atmospheres, H2O molecules from ambient could intercalate into the graphite electrode and hydrolysis reactions could be induced between newly intercalated H2O and ions. After H2O intercalation and hydrolysis, the failure behaviors of the graphite electrode happened as shown by the stage-structure degradation and electronic decoupling.

"We have developed the atmosphere-, temperature- and potential-controlled operando/in situ surface/interface techniques and well-defined model devices," said Prof. Fu. "Such methods can be extended to explore the relaxation and failure mechanisms of more ESDs, such as metal-ion secondary batteries/supercapacitors, and the interface reactions in metal-gas batteries."

More information: Chao Wang et al, In Situ Visualization of Atmosphere-Dependent Relaxation and Failure in Energy Storage Electrodes, Journal of the American Chemical Society (2021). DOI: 10.1021/jacs.1c09429

Citation: Surface science methodology reveals relaxation and failure mechanisms of energy storage devices (2021, November 15) retrieved 25 April 2024 from https://phys.org/news/2021-11-surface-science-methodology-reveals-failure.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Surface effect of electrodes revealed by operando surface science methodology

57 shares

Feedback to editors