Magnetism generated in 2D organic material by star-like arrangement of molecules

Magnetism generated in 2D organic material by star-like arrangement of molecules
The star-like ‘kagome’ molecular structure of the 2D metal-organic material results in strong electronic interactions and non-trivial magnetic properties (left: STM image, right: non-contact AFM). Credit: FLEET

A 2D nanomaterial consisting of organic molecules linked to metal atoms in a specific atomic-scale geometry shows non-trivial electronic and magnetic properties due to strong interactions between its electrons.

A new study, published today, shows the emergence of magnetism in a 2D organic material due to strong electron-electron interactions; these interactions are the direct consequence of the material's unique, star-like atomic-scale structure.

This is the first observation of local magnetic moments emerging from interactions between electrons in an atomically thin 2D organic material.

The findings have potential for applications in next-generation electronics based on organic nanomaterials, where tuning of interactions between electrons can lead to a vast range of electronic and magnetic phases and properties.

Strong electron-electron interactions in a 2D organic kagome material

The Monash University study investigated a 2D metal-organic nanomaterial composed of organic molecules arranged in a kagome geometry, that is, following a "star-like" pattern.

The 2D metal-organic nanomaterial consists of dicyanoanthracene (DCA) molecules coordinated with copper atoms on a weakly-interacting metal surface (silver).

By means of careful and atomically precise scanning probe microscopy (SPM) measurements, the researchers found that the 2D metal-organic structure—whose molecular and atomic building blocks are by themselves non-magnetic—hosts magnetic moments confined at specific locations.

Theoretical calculations showed that this emergent magnetism is due to strong electron-electron Coulomb repulsion given by the specific 2D kagome geometry.

"We think that this can be important for the development of future electronics and spintronics technologies based on organic materials, where tuning of interactions between electrons can lead to control over a wide range of electronic and ," says FLEET CI A/Prof Agustin Schiffrin.

Magnetism generated in 2D organic material by star-like arrangement of molecules
Confirmation of the Kondo effect, via scanning tunneling spectroscopy measurements of density of electronic states, confirms the presence of local magnetism in the 2D metal-organic framework. Credit: FLEET

Direct probing of magnetism via the Kondo effect

The electrons of 2D materials with a kagome crystal structure can be subject to strong Coulomb interactions due to destructive wavefunction interference and quantum localisation, leading to a wide range of topological and strongly correlated electronic phases.

Such strong electronic correlations can manifest themselves via the emergence of magnetism, and, until now, have not been observed in atomically-thin 2D organic materials. The latter can be beneficial for solid-state technologies owing to their tunability and self-assembly capability.

In this study, magnetism resulting from strong electron-electron Coulomb interactions in a 2D kagome organic material was revealed via the observation of the Kondo effect.

"The Kondo effect is a many-body phenomenon that occurs when magnetic moments are screened by a sea of conduction electrons. For example, from an underlying metal," says lead author and FLEET member Dr. Dhaneesh Kumar. "And this effect can be detected by SPM techniques."

"We observed the Kondo effect, and from there concluded that the 2D must host magnetic moments. The question then became 'where does this magnetism come from?'"

Theoretical modeling by Bernard Field and colleagues unambiguously showed that this is the direct consequence of strong Coulomb interactions between electrons. These interactions appear only when we bring the normally non-magnetic parts into a 2D kagome metal-organic framework. These interactions hinder electron pairing, with spins of unpaired electrons giving rise to local magnetic moments.

"Theoretical modeling in this study offers a unique insight into the richness of the interplay between quantum correlations, and the topological and magnetic phases. The study provides us with a few hints on how these non-trivial phases can be controlled in 2D materials for potential applications in path-breaking electronics technologies," says FLEET CI A/Prof Nikhil Medhekar.

More information: Dhaneesh Kumar et al, Manifestation of Strongly Correlated Electrons in a 2D Kagome Metal–Organic Framework, Advanced Functional Materials (2021). DOI: 10.1002/adfm.202106474

Journal information: Advanced Functional Materials

Provided by FLEET

Citation: Magnetism generated in 2D organic material by star-like arrangement of molecules (2021, September 13) retrieved 23 February 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Kagome graphene promises exciting properties


Feedback to editors