
 

Using aluminum and water to make clean
hydrogen fuel

August 12 2021, by Nancy W. Stauffer

  
 

  

Laureen Meroueh PhD ’20 (pictured) and professors Douglas P. Hart and
Thomas W. Eagar have shown how to use scrap aluminum plus water to generate
the flow of hydrogen needed for a particular practical application. Credit: Reza
Mirshekari

As the world works to move away from fossil fuels, many researchers
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are investigating whether clean hydrogen fuel can play an expanded role
in sectors from transportation and industry to buildings and power
generation. It could be used in fuel cell vehicles, heat-producing boilers,
electricity-generating gas turbines, systems for storing renewable energy,
and more.

But while using hydrogen doesn't generate carbon emissions, making it
typically does. Today, almost all hydrogen is produced using fossil fuel-
based processes that together generate more than 2 percent of all global
greenhouse gas emissions. In addition, hydrogen is often produced in one
location and consumed in another, which means its use also presents
logistical challenges.

A promising reaction

Another option for producing hydrogen comes from a perhaps surprising
source: reacting aluminum with water. Aluminum metal will readily
react with water at room temperature to form aluminum hydroxide and
hydrogen. That reaction doesn't typically take place because a layer of
aluminum oxide naturally coats the raw metal, preventing it from coming
directly into contact with water.

Using the aluminum-water reaction to generate hydrogen doesn't
produce any greenhouse gas emissions, and it promises to solve the
transportation problem for any location with available water. Simply
move the aluminum and then react it with water on-site. "Fundamentally,
the aluminum becomes a mechanism for storing hydrogen—and a very
effective one," says Douglas P. Hart, professor of mechanical
engineering at MIT. "Using aluminum as our source, we can 'store'
hydrogen at a density that's 10 times greater than if we just store it as a
compressed gas."

Two problems have kept aluminum from being employed as a safe,
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economical source for hydrogen generation. The first problem is
ensuring that the aluminum surface is clean and available to react with
water. To that end, a practical system must include a means of first
modifying the oxide layer and then keeping it from re-forming as the
reaction proceeds.

The second problem is that pure aluminum is energy-intensive to mine
and produce, so any practical approach needs to use scrap aluminum
from various sources. But scrap aluminum is not an easy starting
material. It typically occurs in an alloyed form, meaning that it contains
other elements that are added to change the properties or characteristics
of the aluminum for different uses. For example, adding magnesium
increases strength and corrosion-resistance, adding silicon lowers the
melting point, and adding a little of both makes an alloy that's
moderately strong and corrosion-resistant.

Despite considerable research on aluminum as a source of hydrogen, two
key questions remain: What's the best way to prevent the adherence of
an oxide layer on the aluminum surface, and how do alloying elements in
a piece of scrap aluminum affect the total amount of hydrogen generated
and the rate at which it is generated?

"If we're going to use scrap aluminum for hydrogen generation in a
practical application, we need to be able to better predict what hydrogen
generation characteristics we're going to observe from the aluminum-
water reaction," says Laureen Meroueh Ph.D. '20, who earned her
doctorate in mechanical engineering.

Since the fundamental steps in the reaction aren't well understood, it's
been hard to predict the rate and volume at which hydrogen forms from
scrap aluminum, which can contain varying types and concentrations of
alloying elements. So Hart, Meroueh, and Thomas W. Eagar, a professor
of materials engineering and engineering management in the MIT
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Department of Materials Science and Engineering, decided to
examine—in a systematic fashion—the impacts of those alloying
elements on the aluminum-water reaction and on a promising technique
for preventing the formation of the interfering oxide layer.

To prepare, they had experts at Novelis Inc. fabricate samples of pure
aluminum and of specific aluminum alloys made of commercially pure
aluminum combined with either 0.6 percent silicon (by weight), 1
percent magnesium, or both—compositions that are typical of scrap
aluminum from a variety of sources. Using those samples, the MIT
researchers performed a series of tests to explore different aspects of the
aluminum-water reaction.

Pre-treating the aluminum

The first step was to demonstrate an effective means of penetrating the
oxide layer that forms on aluminum in the air. Solid aluminum is made
up of tiny grains that are packed together with occasional boundaries
where they don't line up perfectly. To maximize hydrogen production,
researchers would need to prevent the formation of the oxide layer on all
those interior grain surfaces.

Research groups have already tried various ways of keeping the
aluminum grains "activated" for reaction with water. Some have crushed
scrap samples into particles so tiny that the oxide layer doesn't adhere.
But aluminum powders are dangerous, as they can react with humidity
and explode. Another approach calls for grinding up scrap samples and
adding liquid metals to prevent oxide deposition. But grinding is a costly
and energy-intensive process.

To Hart, Meroueh, and Eagar, the most promising approach—first
introduced by Jonathan Slocum ScD '18 while he was working in Hart's
research group—involved pre-treating the solid aluminum by painting
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liquid metals on top and allowing them to permeate through the grain
boundaries.

To determine the effectiveness of that approach, the researchers needed
to confirm that the liquid metals would reach the internal grain surfaces,
with and without alloying elements present. And they had to establish
how long it would take for the liquid metal to coat all of the grains in
pure aluminum and its alloys.

They started by combining two metals—gallium and indium—in specific
proportions to create a "eutectic" mixture; that is, a mixture that would
remain in liquid form at room temperature. They coated their samples
with the eutectic and allowed it to penetrate for time periods ranging
from 48 to 96 hours. They then exposed the samples to water and
monitored the hydrogen yield (the amount formed) and flow rate for 250
minutes. After 48 hours, they also took high-magnification scanning
electron microscope (SEM) images so they could observe the boundaries
between adjacent aluminum grains.

Based on the hydrogen yield measurements and the SEM images, the
MIT team concluded that the gallium-indium eutectic does naturally
permeate and reach the interior grain surfaces. However, the rate and
extent of penetration vary with the alloy. The permeation rate was the
same in silicon-doped aluminum samples as in pure aluminum samples
but slower in magnesium-doped samples.

Perhaps most interesting were the results from samples doped with both
silicon and magnesium—an aluminum alloy often found in recycling
streams. Silicon and magnesium chemically bond to form magnesium
silicide, which occurs as solid deposits on the internal grain surfaces.
Meroueh hypothesized that when both silicon and magnesium are
present in scrap aluminum, those deposits can act as barriers that impede
the flow of the gallium-indium eutectic.
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The experiments and images confirmed her hypothesis: The solid
deposits did act as barriers, and images of samples pre-treated for 48
hours showed that permeation wasn't complete. Clearly, a lengthy pre-
treatment period would be critical for maximizing the hydrogen yield
from scraps of aluminum containing both silicon and magnesium.

Meroueh cites several benefits to the process they used. "You don't have
to apply any energy for the gallium-indium eutectic to work its magic on
aluminum and get rid of that oxide layer," she says. "Once you've
activated your aluminum, you can drop it in water, and it'll generate
hydrogen—no energy input required." Even better, the eutectic doesn't
chemically react with the aluminum. "It just physically moves around in
between the grains," she says. "At the end of the process, I could recover
all of the gallium and indium I put in and use it again"—a valuable
feature as gallium and (especially) indium are costly and in relatively
short supply.

Impacts of alloying elements on hydrogen generation

The researchers next investigated how the presence of alloying elements
affects hydrogen generation. They tested samples that had been treated
with the eutectic for 96 hours; by then, the hydrogen yield and flow rates
had leveled off in all the samples.

The presence of 0.6 percent silicon increased the hydrogen yield for a
given weight of aluminum by 20 percent compared to pure
aluminum—even though the silicon-containing sample had less
aluminum than the pure aluminum sample. In contrast, the presence of 1
percent magnesium produced far less hydrogen, while adding both
silicon and magnesium pushed the yield up, but not to the level of pure
aluminum.

The presence of silicon also greatly accelerated the reaction rate,
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producing a far higher peak in the flow rate but cutting short the
duration of hydrogen output. The presence of magnesium produced a
lower flow rate but allowed the hydrogen output to remain fairly steady
over time. And once again, aluminum with both alloying elements
produced a flow rate between that of magnesium-doped and pure
aluminum.

Those results provide practical guidance on how to adjust the hydrogen
output to match the operating needs of a hydrogen-consuming device. If
the starting material is commercially pure aluminum, adding small
amounts of carefully selected alloying elements can tailor the hydrogen
yield and flow rate. If the starting material is scrap aluminum, careful
choice of the source can be key. For high, brief bursts of hydrogen,
pieces of silicon-containing aluminum from an auto junkyard could
work well. For lower but longer flows, magnesium-containing scraps
from the frame of a demolished building might be better. For results
somewhere in between, aluminum containing both silicon and
magnesium should work well; such material is abundantly available from
scrapped cars and motorcycles, yachts, bicycle frames, and even
smartphone cases.

It should also be possible to combine scraps of different aluminum alloys
to tune the outcome, notes Meroueh. "If I have a sample of activated
aluminum that contains just silicon and another sample that contains just
magnesium, I can put them both into a container of water and let them
react," she says. "So I get the fast ramp-up in hydrogen production from
the silicon and then the magnesium takes over and has that steady
output."

Another opportunity for tuning: Reducing grain size

Another practical way to affect hydrogen production could be to reduce
the size of the aluminum grains—a change that should increase the total
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surface area available for reactions to occur.

To investigate that approach, the researchers requested specially
customized samples from their supplier. Using standard industrial
procedures, the Novelis experts first fed each sample through two
rollers, squeezing it from the top and bottom so that the internal grains
were flattened. They then heated each sample until the long, flat grains
had reorganized and shrunk to a targeted size.

In a series of carefully designed experiments, the MIT team found that
reducing the grain size increased the efficiency and decreased the
duration of the reaction to varying degrees in the different samples.
Again, the presence of particular alloying elements had a major effect on
the outcome.

Needed: A revised theory that explains observations

Throughout their experiments, the researchers encountered some
unexpected results. For example, standard corrosion theory predicts that
pure aluminum will generate more hydrogen than silicon-doped
aluminum will—the opposite of what they observed in their
experiments.

To shed light on the underlying chemical reactions, Hart, Meroueh, and
Eagar investigated hydrogen "flux," that is, the volume of hydrogen
generated over time on each square centimeter of aluminum surface,
including the interior grains. They examined three grain sizes for each of
their four compositions and collected thousands of data points measuring
hydrogen flux.

Their results show that reducing grain size has significant effects. It
increases the peak hydrogen flux from silicon-doped aluminum as much
as 100 times and from the other three compositions by 10 times. With

8/10



 

both pure aluminum and silicon-containing aluminum, reducing grain
size also decreases the delay before the peak flux and increases the rate
of decline afterward. With magnesium-containing aluminum, reducing
the grain size brings about an increase in peak hydrogen flux and results
in a slightly faster decline in the rate of hydrogen output. With both
silicon and magnesium present, the hydrogen flux over time resembles
that of magnesium-containing aluminum when the grain size is not
manipulated. When the grain size is reduced, the hydrogen output
characteristics begin to resemble behavior observed in silicon-containing
aluminum. That outcome was unexpected because when silicon and
magnesium are both present, they react to form magnesium silicide,
resulting in a new type of aluminum alloy with its own properties.

The researchers stress the benefits of developing a better fundamental
understanding of the underlying chemical reactions involved. In addition
to guiding the design of practical systems, it might help them find a
replacement for the expensive indium in their pre-treatment mixture.
Other work has shown that gallium will naturally permeate through the
grain boundaries of aluminum. "At this point, we know that the indium
in our eutectic is important, but we don't really understand what it does,
so we don't know how to replace it," says Hart.

But already Hart, Meroueh, and Eagar have demonstrated two practical
ways of tuning the hydrogen reaction rate: by adding certain elements to
the aluminum and by manipulating the size of the interior aluminum
grains. In combination, those approaches can deliver significant results.
"If you go from magnesium-containing aluminum with the largest grain
size to silicon-containing aluminum with the smallest grain size, you get
a hydrogen reaction rate that differs by two orders of magnitude," says
Meroueh. "That's huge if you're trying to design a real system that would
use this reaction."

  More information: Laureen Meroueh et al, Effects of Mg and Si
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