A new sensitive tool for the efficient quantification of plant disease susceptibility

plants
Credit: CC0 Public Domain

While several biology techniques have undergone significant technical advances that have allowed their high-throughput implementation, assessing the resistance levels of plant varieties to microbial pathogens remains an arduous and time-consuming task. In response to this, Pujara and collaborators took advantage of the naturally occurring luminescence of a deep-sea shrimp to engineer a light-producing bacterial reporter that allows the quantification of plant resistance levels through imaging.

The Nanoluc luciferase (NL) from Oplophorus gracilirostris is a small protein characterized by its high stability and strong brightness. The researchers exploited these features to produce a light emitting bacterial strain from the Pseudomonas syringae species, a plant pathogen. Because reproduce at a higher pace in susceptible than resistant hosts, susceptible were expected to produce more light when infected with a controlled amount of the luminescent pathogen. By integrating this setup with an automated table with a camera that moves within and images plants, the researchers were able to simultaneously phenotype over 30 Arabidopsis thaliana mutants. This novel quantification method was compared with conventional culture-based techniques, showing a high correlation between the outcomes of both approaches, indicating the robustness of the newly developed tool and the potential of this technology for other uses and applications.

"Our high throughput imaging-based resistance assay will provide plant pathologists and breeders a long-sought tool to screen an unprecedented number of plants to identify resistance traits that could fight a potential future pandemic," explained Hong-Gu Kang, the researcher leading this project. "In addition, we are currently working on developing an (AI) algorithm that will further expedite resistance analysis processes. Ultimately, we would like to conduct a project to assess all the genes in Arabidopsis and other species for resistance," he added.

More information: Dinesh S. Pujara et al, Imaging-based resistance assay using enhanced luminescence-tagged Pseudomonas syringae reveals a complex epigenetic network in plant defense signaling pathways, Molecular Plant-Microbe Interactions (2021). DOI: 10.1094/MPMI-12-20-0351-TA

Provided by American Phytopathological Society

Citation: A new sensitive tool for the efficient quantification of plant disease susceptibility (2021, July 14) retrieved 19 April 2024 from https://phys.org/news/2021-07-sensitive-tool-efficient-quantification-disease.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Study reports novel role of enzyme in plant immunity and defense gene expression

5 shares

Feedback to editors