Reprogrammed whale neurons predict neurotoxicity of environmental pollutants

Reprogrammed whale neurons predict neurotoxicity of environmental pollutants
Exposure of a PCB metabolite to whale-derived induced neurons caused apoptosis and neurodegeneration. Credit: Environmental Science & Technology, American Chemical Society

Whales accumulate large burdens of environmental pollutants that threaten their survival and health. Toxicological studies on cetacean species have been extremely challenging because invasive studies are restricted by legal and ethical considerations and sampling of wild cetaceans is highly opportunistic. Although model animal studies can provide data from practical experiments, extrapolating the toxicological effects to cetaceans is limited due to the large interspecies susceptibility to chemical exposure. The types of whale cells that can be cultured are limited, and cell-specific assays for whales have not been developed. A research team of the Center for Marine Environmental Studies (CMES) of Ehime University, Japan succeeded in direct reprogramming the fibroblasts of stranded melon-headed whales (Peponocephala electra) to neurons, not through the induction of pluripotent stem cells (iPSCs), but by using a cocktail of small compounds. Using whale induced neurons, they have investigated the neurotoxicity of an environmental pollutant on cetacean neurons for the first time. Their research was recently published in Environmental Science & Technology.

Reprogramming from fibroblasts to neuronal cells

The research team obtained from melon-headed mass stranded along the coast of Hokota-city, Ibaraki, Japan. After a few weeks of treatment with a cocktail of small compounds, the morphology of the fibroblast cells derived from the melon-headed whale tissues changed to neuron-like cells. Reprogramming of the fibroblasts to neurons, induced (iNCs), was confirmed by positive signals for neuronal markers: beta-III tubulin (Tuj-1) and microtubule associated protein 2 (MAP2), and negative signals for astrocyte and oligodendrocyte markers: glial fibrillary acidic protein (GFAP) and 2,"3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), respectively. Transcriptome analysis of the whale iNCs also supported the success in reprogramming, showing downregulation of a fibroblast marker elastin (ELN) and upregulation of neuron-related genes such as synaptic genes: synaptophysin (SYP) and stathmin 3 (STMN3).

Apoptosis assay

Apoptosis was measured by detecting nuclear chromatin fragmentation by TUNEL assay. Over 80% of whale iNCs have led to apoptosis after 24hr exposure to 20μM 4'OH-CB72, with apoptosis-positive cells increasing 1.8-2.4 times compared to vehicle controls.

Transcriptome analysis of whale neuronal cells exposed to 4'OH-CB72

Upregulation of the genes related to apoptosis in whale iNCs was also confirmed by transcriptome analysis. Genes such as apoptosis inducing factor mitochondria associated 1 (AIFM1), BH3 interacting domain death agonist (BID), and (TNF) receptor associated factor 2 (TRAF2) were upregulated in whale iNCs. On the other hand, cell survival-related genes were downregulated in whale iNCs. Additionally, many genes involved in such as Alzheimer's disease, , and Huntington's disease were altered in whale iNCs exposed to 4'OH-CB72.

Bioinformatics analyses using differentially expressed genes upon exposure to 4'OH-CB72 suggested that the cellular signaling pathways of mitochondrial dysfunction, chromatin degradation, axonal transport, and ubiquitin−proteasome system were disrupted by this pollutant. These effects ultimately lead to neurodegeneration through neuronal apoptosis and cell death.

More information: Mari Ochiai et al, Directly Reprogrammed Neurons as a Tool to Assess Neurotoxicity of the Contaminant 4-Hydroxy-2′,3,5,5′-tetrachlorobiphenyl (4′OH-CB72) in Melon-Headed Whales, Environmental Science & Technology (2021). DOI: 10.1021/acs.est.1c01074

Provided by Ehime University

Citation: Reprogrammed whale neurons predict neurotoxicity of environmental pollutants (2021, July 27) retrieved 22 July 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Gray whale off coast of Namibia swam halfway around the world to get there


Feedback to editors