
 

New clues to why there's so little antimatter
in the universe
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Imagine a dust particle in a storm cloud, and you can get an idea of a
neutron's insignificance compared to the magnitude of the molecule it
inhabits.
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But just as a dust mote might affect a cloud's track, a neutron can
influence the energy of its molecule despite being less than one-millionth
its size. And now physicists at MIT and elsewhere have successfully
measured a neutron's tiny effect in a radioactive molecule.

The team has developed a new technique to produce and study short-
lived radioactive molecules with neutron numbers they can precisely
control. They hand-picked several isotopes of the same molecule, each
with one more neutron than the next. When they measured each
molecule's energy, they were able to detect small, nearly imperceptible
changes of the nuclear size, due to the effect of a single neutron.

The fact that they were able to see such small nuclear effects suggests
that scientists now have a chance to search such radioactive molecules
for even subtler effects, caused by dark matter, for example, or by the
effects of new sources of symmetry violations related to some of the
current mysteries of the universe.

"If the laws of physics are symmetrical as we think they are, then the Big
Bang should have created matter and antimatter in the same amount. The
fact that most of what we see is matter, and there is only about one part
per billon of antimatter, means there is a violation of the most
fundamental symmetries of physics, in a way that we can't explain with
all that we know," says Ronald Fernando Garcia Ruiz, assistant professor
of physics at MIT.

"Now we have a chance to measure these symmetry violations, using
these heavy radioactive molecules, which have extreme sensitivity to
nuclear phenomena that we cannot see in other molecules in nature," he
says. "That could provide answers to one of the main mysteries of how
the universe was created."

Ruiz and his colleagues have published their results today in Physical
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Review Letters.

A special asymmetry

Most atoms in nature host a symmetrical, spherical nucleus, with
neutrons and protons evenly distributed throughout. But in certain
radioactive elements like radium, atomic nuclei are weirdly pear-shaped,
with an uneven distribution of neutrons and protons within. Physicists
hypothesize that this shape distortion can enhance the violation of
symmetries that gave origin to the matter in the universe.

"Radioactive nuclei could allow us to easily see these symmetry-violating
effects," says study lead author Silviu-Marian Udrescu, a graduate
student in MIT's Department of Physics. "The disadvantage is, they're
very unstable and live for a very short amount of time, so we need
sensitive methods to produce and detect them, fast."

Rather than attempt to pin down radioactive nuclei on their own, the
team placed them in a molecule that further amplifies the sensitivity to
symmetry violations. Radioactive molecules consist of at least one
radioactive atom, bound to one or more other atoms. Each atom is
surrounded by a cloud of electrons that together generate an extremely
high electric field in the molecule that physicists believe could amplify
subtle nuclear effects, such as effects of symmetry violation.

However, aside from certain astrophysical processes, such as merging
neutron stars, and stellar explosions, the radioactive molecules of interest
do not exist in nature and therefore must be created artificially. Garcia
Ruiz and his colleagues have been refining techniques to create
radioactive molecules in the lab and precisely study their properties. Last
year, they reported on a method to produce molecules of radium
monofluoride, or RaF, a radioactive molecule that contains one unstable
radium atom and a fluoride atom.
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In their new study, the team used similar techniques to produce RaF
isotopes, or versions of the radioactive molecule with varying numbers
of neutrons. As they did in their previous experiment, the researchers
utilized the Isotope mass Separator On-Line, or ISOLDE, facility at
CERN, in Geneva, Switzerland, to produce small quantities of RaF
isotopes.

The facility houses a low-energy proton beam, which the team directed
toward a target—a half-dollar-sized disc of uranium-carbide, onto which
they also injected a carbon fluoride gas. The ensuing chemical reactions
produced a zoo of molecules, including RaF, which the team separated
using a precise system of lasers, electromagnetic fields, and ion traps.

The researchers measured each molecule's mass to estimate of the
number of neutrons in a molecule's radium nucleus. They then sorted the
molecules by isotopes, according to their neutron numbers.

In the end, they sorted out bunches of five different isotopes of RaF,
each bearing more neutrons than the next. With a separate system of
lasers, the team measured the quantum levels of each molecule.

"Imagine a molecule vibrating like two balls on a spring, with a certain
amount of energy," explains Udrescu, who is a graduate student of MIT's
Laboratory for Nuclear Science. "If you change the number of neutrons
in one of these balls, the amount of energy could change. But one
neutron is 10 million times smaller than a molecule, and with our current
precision we didn't expect that changing one would create an energy
difference, but it did. And we were able to clearly see this effect."

Udrescu compares the sensitivity of the measurements to being able to
see how Mount Everest, placed on the surface of the sun, could, however
minutely, change the sun's radius. By comparison, seeing certain effects
of symmetry violation would be like seeing how the width of a single
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human hair would alter the sun's radius.

The results demonstrate that radioactive molecules such as RaF are
ultrasensitive to nuclear effects and that their sensitivity may likely
reveal more subtle, never-before-seen effects, such as tiny symmetry-
violating nuclear properties, that could help to explain the universe's
matter-antimmater asymmetry.

"These very heavy radioactive molecules are special and have sensitivity
to nuclear phenomena that we cannot see in other molecules in nature,"
Udrescu says. "This shows that, when we start to search for symmetry-
violating effects, we have a high chance of seeing them in these 
molecules."
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