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Moving from a manual to automated experimentation approach enables scientists
to more thoroughly explore parameter spaces. With artificial intelligence (AI)
decision-making methods, scientists can home in on key parts of the parameter
space (here, composition and temperature) for accelerated material discovery.
Credit: Brookhaven National Laboratory

In the popular view of traditional science, scientists are in the lab
hovering over their experiments, micromanaging every little detail. For
example, they may iteratively test a wide variety of material
compositions, synthesis and processing protocols, and environmental
conditions to see how these parameters influence material properties. In
each iteration, they analyze the collected data, looking for patterns and
relying on their scientific knowledge and intuition to select useful follow-
on measurements.

1/9



 

This manual approach consumes limited instrument time and the
attention of human experts who could otherwise focus on the bigger
picture. Manual experiments may also be inefficient, especially when
there is a large set of parameters to explore, and are subject to human
bias—for instance, in deciding when one has collected enough data and
can stop an experiment. The conventional way of doing science cannot
scale to handle the enormous complexity of future scientific challenges.
Advances in scientific instruments and data analysis capabilities at
experimental facilities continue to enable more rapid measurements.
While these advances can help scientists tackle complex experimental
problems, they also exacerbate the human bottleneck; no human can
keep up with modern experimental tools!

Envisioning automation

One such facility managing these types of challenges is the National
Synchrotron Light Source II (NSLS-II) at the U.S. Department of
Energy's (DOE) Brookhaven National Laboratory. By directing light
beams, ranging from infrared to hard X-rays, toward samples at
experimental stations (beamlines), NSLS-II can reveal the electronic,
chemical, and atomic structures of materials. When scientists were
designing these beamlines a decade ago, they had the foresight to
incorporate automation enabled by machine learning (ML) and artificial
intelligence (AI)—now an exploding field—as part of their vision.

"We thought, wouldn't it be great if scientists could not only do
measurements faster but also do intelligent exploration—that is, explore
scientific problems in smarter, more efficient ways by leveraging
modern computer science methods," said Kevin Yager, leader of the
Electronic Nanomaterials Group of the Center for Functional
Nanomaterials (CFN) at Brookhaven Lab. "In fact, at the CFN, we've
defined one of our research themes to be accelerated nanomaterial
discovery."
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This idea for a highly automated beamline that could intelligently
explore scientific problems ended up becoming a long-term goal of the
Complex Materials Scattering (CMS) beamline, developed and operated
by a team led by Masafumi Fukuto.

"We started by building high-throughput capabilities for fast
measurements, like a sample-exchanging robot and lots of in-situ tools to
explore different parameters such as temperature, vapor pressure, and
humidity," said Fukuto. "At the same time, we began thinking about
automating not just the beamline hardware for data collection but also
real-time data analysis and experimental decision making. The ability to
take measurements very quickly is useful and necessary but not
sufficient for revolutionary materials discovery because material
parameter spaces are very large and multidimensional."

For example, one experiment may have a parameter space with five
dimensions and more than 25,000 distinct points within that space to
explore. Both the data acquisition and analysis software to deal with
these large, high-dimensional parameter spaces were built in house at
Brookhaven. For data collection, they built on top of Bluesky software,
which NSLS-II developed. To analyze the data, Yager wrote code for an
image-analysis software called SciAnalysis.

Closing the loop

In 2017, Fukuto and Yager began collaborating with Marcus Noack, then
a postdoc and now a research scientist in the Center for Advanced
Mathematics for Energy Research Applications (CAMERA) at DOE's
Lawrence Berkeley National Laboratory. During his time as a postdoc,
Noack was tasked with collaborating with the Brookhaven team on their
autonomous beamline concept. Specifically, they worked together to
develop the last piece to create a fully automated experimental setup: a
decision-making algorithm. The Brookhaven team defined their needs,
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while Noack provided his applied mathematics expertise and wrote the
software to meet these needs.

By leveraging AI and ML, this algorithm determines the best next
measurements to make while an experiment is ongoing. (AI refers to a
machine simulating human behavior, while ML is a subfield of AI in
which a machine automatically learns from past data.) For the algorithm
to start modeling a system, it's as simple as a user defining the inputs and
outputs: what are the variables I can control in the experiment, and what
am I going to measure? But the more information humans provide ahead
of time—such as the expected response of the system or known
constraints based on the particular problem being studied—the more
robust the modeling will be. Behind the scenes, a Gaussian process is at
work modeling the system's behavior.

"A Gaussian process is a mathematically rigorous way to estimate
uncertainty," explained Yager. "That's another way of saying knowledge
in my mind. And that's another way of saying science. Because in
science, that's what we're most interested in: What do I know, and how
well do I know it?"

"That's the ML part of it," added Fukuto. "The algorithm goes one step
beyond that. It automatically makes decisions based on this knowledge
and human inputs to select which point would make sense to measure
next."

In a simplistic case, this next measurement would be the location in the
parameter space where information gain can be maximized (or
uncertainty reduced). The team first demonstrated this proof of concept
in 2019 at the NSLS-II CMS beamline, imaging a nanomaterial film
made specifically for this demonstration.

Since this initial success, the team has been making the algorithm more
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sophisticated, applying it to study a wide range of real (instead of
contrived) scientific problems from various groups, and extending it to
more experimental techniques and facilities.

While the default version of the algorithm aims to minimize uncertainty
or maximize knowledge gain in an iterative fashion, there are other ways
to think about where to focus experimental attention to obtain the most
value. For example, for some scientists, the cost of the
experiment—whether its duration or amount of materials used—is
important. In other words, it's not just where you take the data but how 
expensive it is to take those data. Others may find value in homing in on
specific features, such as boundaries within a parameter space or grain
size of a crystal. The more sophisticated, flexible version of the
algorithm that Noack developed can be programmed to have increased
sensitivity to these features.

"You can tune what your goals are in the experiment," explained Yager.
"So, it can be knowledge gain, or knowledge gain regulated by
experimental cost or associated with specific features."

Other improvements include the algorithm's ability to handle the
complexity of real systems, such as the fact that materials are
inhomogeneous, meaning they are not the same at every point across a
sample. One part of a sample may have a uniform composition, while
another may have a variable composition. Moreover, the algorithm now
takes into account anisotropy, or how individual parameters can be very
different from each other in terms of how they affect a system. For
example, "x" and "y" are equivalent parameters (they are both positional
coordinates) but temperature and pressure are not.

"Gaussian processes use kernels—functions that describe how data
points depend on each other across space—for interpolation," said
Noack. "Kernels have all kinds of interesting mathematical properties.
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For instance, they can encode varying degrees of inhomogeneity for a
sample."

Increasing the sophistication of the algorithm is only part of the
challenge. Then, Fukuto and Yager have to integrate the updated
algorithm into the closed-loop automated experimental workflow and
test it on different experiments—not only those done in-house but also
those performed by users.

Deploying the method to the larger scientific
community

Recently, Fukuto, Yager, Noack, and colleagues have deployed the
autonomous method to several real experiments at various NSLS-II
beamlines, including CMS and Soft Matter Interfaces (SMI). Noack and
collaborators have also deployed the method at LBNL's Advanced Light
Source (ALS) and the Institut Laue-Langevin (ILL), a neutron scattering
facility in France. The team released their decision-making software, 
gpCAM, to the wider scientific community so anyone could set up their
own autonomous experiments.

In one experiment, in collaboration with the U.S. Air Force Research
Laboratory (AFRL), they used the method in an autonomous
synchrotron X-ray scattering experiment at the CMS beamline. In X-ray
scattering, the X-rays bounce off a sample in different directions
depending on the sample's structure. The first goal of the experiment
was to explore how the ordered structure of nanorod-polymer composite
films depends on two fabrication parameters: the speed of film coating
and the substrate's chemical coating. The second goal was to use this
knowledge to locate and home in on the regions of the films with the
highest degrees of order.
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"These materials are of interest for optical coatings and sensors,"
explained CMS beamline scientist Ruipeng Li. "We used a particular
fabrication method that mimics industrial roll-to-roll processes to find
out the best way to form these ordered films using industrially scalable
processes."

In another X-ray scattering experiment, at the SMI beamline, the
algorithm successfully identified regions of unexpected ordering in a
parameter space relevant to the self-assembly of block copolymer films.
Block copolymers are polymers made up of two or more chemically
distinct "blocks" linked together. By identifying these features, the
autonomous experiment illuminated a problem with the fabrication
method.

"It wasn't hypothetical—we've been working on this project for many
years," said CFN materials scientist Gregory Doerk. "We had been
iterating in the old way, doing some experiments, taking images at
locations we arbitrarily picked, looking at the images, and being puzzled
as to what's going on. With the autonomous approach, in one day of
experiments at the beamline, we were able to find the defects and then
immediately fix them in the next round. That's a dramatic acceleration
of the normal cycle of research where you do a study, find out it didn't
work, and go back to the drawing board."

Noack and his collaborators also applied the method to a different kind
of X-ray technique called autonomous synchrotron infrared mapping,
which can provide chemical information about a sample. And they
demonstrated how the method could be applied to a spectroscopy
technique to autonomously discover phases where electrons behave in a
strongly correlated manner and to neutron scattering to autonomously
measure magnetic correlations.

Shaping the future of autonomous experimentation
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According to Yager, their method can be applied to any technique for
which the data collection and data analysis are already automated. One
of the advantages of the approach is that it's "physics agnostic," meaning
it's not tied to any particular kind of material, physical problem, or
technique. The physically meaningful quantities for the decision making
are extracted through the analysis of the raw data.

"We wanted to make our approach very general so that it could be
applied to anything and then down the road tailored to specific
problems," said Yager. "As a user facility, we want to empower the
largest number of people to do interesting science."

In the future, the team will add functionality for users to incorporate
physics awareness, or knowledge about the materials or phenomena
they're studying, if they desire. But the team will do so in a way that
doesn't destroy the general-purpose flexibility of the approach; users will
be able to turn this extra knowledge on or off.

Another aspect of future work is applying the method to control real-
time processes—in other words, controlling a system that's dynamically
evolving in time as an experiment proceeds.

"Up until this point, we've been concentrating on making decisions on
how to measure or characterize prepared material systems," said Fukuto.
"We also want to make decisions on how to change materials or what
kinds of materials we want to make. Understanding the fundamental
science behind material changes is important to improving
manufacturing processes."

Realizing this capability to intelligently explore materials evolving in real
time will require overcoming algorithmic and instrumentation
challenges.
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"The decision making has to be very fast, and you have to build sample
environments to do materials synthesis in real time while you're taking
measurements with an X-ray beam," explained Yager.

Despite these challenges, the team is excited about what the future of
autonomous experimentation holds.

"We started this effort at a very small scale, but it grew into something
much larger," said Fukuto. "A lot of people are interested in it, not just
us. The user community has been expanding, and with users studying
different kinds of problems, this approach could have a great impact on
accelerating a host of scientific discoveries."

"It represents a really big shift in thinking to go from the old way of
micromanaging experiments to this new vision of automated systems
running experiments with humans orchestrating them at a very high level
because they understand what needs to be done and what the science
means," said Yager. "That's a very exciting vision for the future of
science. We're going to be able to tackle problems in the future that 10
years ago people would have said are impossible."
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