Permafrost carbon loss reduces microbial stability

Reduced microbial stability linked to soil carbon loss in active layer under alpine permafrost degra
Relationships between soil organic carbon (SOC) density and community dissimilarity. Credit: NIEER

Chinese researchers have recently discovered links between reduction in microbial stability and soil carbon loss in the active layer of degraded alpine permafrost on the Qinghai-Tibet Plateau (QTP).

The researchers, headed by Prof. Chen Shengyun from the Northwest Institute of Eco-Environment and Resources (NIEER) of the Chinese Academy of Sciences (CAS), and Xue Kai from University of Chinese Academy of Sciences, conducted a combined in-depth analysis of soil microbial communities and their co-occurrence networks in the active permafrost layer along an extensive gradient of permafrost degradation.

The QTP encompasses the largest extent of high-altitude mountain permafrost in the world. This permafrost is different than high-latitude permafrost and stores massive soil carbon. An often ignored characteristic of permafrost is that the carbon pool in the active layer soil is more active and directly affected by , compared to deeper layers.

Triggered by climate warming, permafrost degradation may decrease soil carbon stability and induce massive carbon loss, thus leading to positive carbon-climate feedback. However, microbial-mediated mechanisms for carbon loss from the active layer soil in degraded permafrost still remain unclear.

Reduced microbial stability linked to soil carbon loss in active layer under alpine permafrost degra
Co-occurrence networks (A) and robustness analysis (B) for microbial communities between lightly (S-SSP) and severely (U-EUP) degraded permafrost. Credit: NIEER

In this study, the researchers found that alpine permafrost degradation reduced the stability of active layer as evidenced by increased sensitivity of microbial composition to , promoted destabilizing network properties and reduced resistance to node or edge attacking of the microbial network.

They discovered that soil organic carbon loss in severely degraded permafrost is associated with increased microbial dissimilarity, thereby potentially contributing to a positive carbon feedback in alpine permafrost on the QTP.

Explore further

Permafrost degradation affects hydrological factors in source area of Yellow River

More information: Ming-Hui Wu et al, Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation, Proceedings of the National Academy of Sciences (2021). DOI: 10.1073/pnas.2025321118
Citation: Permafrost carbon loss reduces microbial stability (2021, June 16) retrieved 17 August 2022 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors