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Extraction of structure motif information in inorganic crystalline compounds
(metal oxides) and the generation of global motif representations using the motif
environment matrix. Credit: Science Advances, doi: 10.1126/sciadv.abf1754

Physical principles can be incorporated in a machine learning
architecture as a fundamental setup to develop artificial intelligence for
inorganic materials. In a new report now on Science Advances, Huta R.
Banjade, and a research team in physics, computer and information
science and nanoscience in the U.S. and Belgium proposed structure
motifs in inorganic crystals to serve as a central input to a machine
learning framework. The team demonstrated how the presence of
structure motifs and their connections in a large set of crystalline
compounds could be converted into unique vector representations via an
unsupervised learning algorithm. They accomplished this by creating a
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motif-centric leaning framework by combining motif information with
atom-based graph neural networks to form an atom-motif dual graph
network (AMDNet). The setup accurately predicted the electronic
structure of metal oxides such as bandgaps. The work illustrates a
method to design graph neural network learning architectures to
investigate complex materials beyond atom physical properties.

ML methods

Machine learning (ML) methods can be combined with massive material
data to accelerate the discovery and rational design of functional solid-
state compounds. Supervised learning can lead to material property
predictions, including phase stability and crystal nature, effective for 
molecule dynamics simulations. Structure motifs can be created in
accordance with Pauling's first rule, by forming a coordinated
polyhedron of anions about each cation in a compound to behave as
fundamental building blocks that are highly correlated with material
properties. For instance, the structure motifs in crystalline compounds
can play an essential role to determine the material properties in various
technical and scientific applications. In this work, Banjade et al.
incorporated structure motif information into a machine leaning (ML)
framework. The scientists combined the motif information with graph
convolutional neural networks to develop a motif-centric deep learning
architecture known as atom-motif dual graph network (AMDNet). The
accuracy of the structure surpassed that of an existing state-of-the-art
atom-based graph network to predict the electronic structures of
inorganic crystalline materials.
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The t-distributed stochastic neighbor embedding projection of motif vectors
constructed by using the motif environment matrix. The motif clusters 1 to 4 are
associated with various motif types including (1) cube, (2) cuboctahedron, (3)
octahedron, and (4) a mixture of tetrahedron (in magenta) and square plane (in
remnant). t-SNE, t-distributed stochastic neighbor embedding. Credit: Science
Advances, doi: 10.1126/sciadv.abf1754

 Structure motifs clustering

An unsupervised learning algorithm Atom2Vec can understand high-
dimensional vector representations of atoms by encoding basic
properties of atoms based on an extensive database of chemical
formulae. Banjade et al. focused on binary and ternary metal oxides that
constitute a vast and diverse material space where crystal structures are
characterized via cation-oxygen coordination. To extract the structure
motif information, the team used the local environment identification
method developed by Waroquiers et al. as implemented by the Pymatgen
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code. The team identified three different types of connectivity between a
motif and its neighboring motif; including inner sharing (one-atom
shared), edge sharing (two atoms shared), and face sharing (three or
more atoms shared). The scientists then proposed a learning algorithm to
take advantage of the motif data collection process and effectively
converted each row of the motif environment matrix into a high-
dimensional vector to represent a unique structure motif. They then
extracted motif information for the learning process using a graph
convolutional network. The team aimed to identify patterns and
clustering information for these high-dimensional motif vectors to
influence the complex material properties of oxide compounds. They
visualized the high dimensional data using the t-distributed stochastic
neighbor embedding (t-SNE) – a nonlinear dimensionality reduction
technique.

Using motif information in graph neural networks.

  
 

  

Construction of a motif graph based on both atom-level and motif-level
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information encoded in an inorganic crystal. Credit: Science Advances, doi:
10.1126/sciadv.abf1754

The scientists obtained projected motif vector data in two dimensions
using the t-SNE process. They noted distinct clusters based on the motif
types. The chemical properties of the elements forming the motifs
played a key role during cluster formation. For example, Lanthanide-
based motifs formed different clusters on the basis of motif type and 
Yttrium-based motifs remained close to the Lanthanide-based motifs
due to their chemical similarities. Motifs associated with zinc and
magnesium also clustered together. The unsupervised learning-based
findings supported the structure motifs to serve as essential inputs for
crystalline compounds carrying elemental and structural information.
The team then used structure motif information as an essential input to a 
graph neural network (GNN) to predict physical properties of materials.
Most of the graph networks applied to crystalline materials. To enable a
learning architecture of atom-level and motif-level graph representations
of materials, Banjade et al. proposed that AMDNet could be constructed
to enhance the learning process and improve the prediction accuracy for
the electronic structure properties of metal oxides. In the motif graphs,
the researchers encoded atom-level and motif-level information in each
node and constructed the motif graph, including extended connectivity,
angle, distance and order parameters using Python package
robocrystallography.

AMDNet

In the proposed AMDNet architecture, Banjade et al. incorporated motif
information into a graph network learning framework to generate motif
graphs and atom graphs representing compounds with different
cardinality of edges and nodes to combine the information prior to
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making predictions. For each material, the team generated an atom graph
and a motif graph. They then used 22,606 binary and ternary metal
oxides from the Materials Project database to test the effectiveness of
the proposed model and focused on the prediction of bandgaps—a
complex electronic structure problem. The results showed the superiority
of AMDNet during bandgap prediction when compared to preceding
networks. The model also showed superior performance during a metal
versus nonmetal classification task. The work showed the initial efforts
to incorporate high-level material information in deep learning models
for solid-state materials.

  
 

  

AMDNet architecture and materials property predictions. (A) Demonstration of
the learning architecture of the proposed atom-motif dual graph network
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(AMDNet) for the effective learning of electronic structures and other material
properties of inorganic crystalline materials. (B) Comparison of predicted and
actual bandgaps [from density functional theory (DFT) calculations] and (C)
comparison of predicted and actual formation energies (from DFT calculations)
in the test dataset with 4515 compounds. Credit: Science Advances, doi:
10.1126/sciadv.abf1754

 Outlook

In this way, Huta R. Banjade and colleagues showed how structure
motifs in crystal structures could be combined with unsupervised and
supervised machine learning methods to improve the effective
representation of solid-state material systems. For complex electronic
structures, the team included the structure and motif connection 
information in to an AMDNet model to outperform existing networks
and predict the electronic bandgaps and metal versus nonmetal
classification tasks. This general learning framework can be used to
predict other materials properties including mechanical and excited state
properties across two-dimensional materials and metal-organic
frameworks.

  More information: Banjade H.R. et al. Structure motif–centric
learning framework for inorganic crystalline systems, Science Advances, 
DOI: 10.1126/sciadv.abf1754 

Curtarolo S. et al. Predicting Crystal Structures with Data Mining of
Quantum Calculations., Physical Review Letters, 
doi.org/10.1103/PhysRevLett.91.135503

Dong Y. et al. Bandgap prediction by deep learning in configurationally
hybridized graphene and boron nitride, Computational Materials, 
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