
 

New take on machine learning helps us 'scale
up' phase transitions
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A correlation configuration (top left) is reduced using a newly developed block-
cluster transformation (top right). Both the original and reduced configurations
have an improved estimator technique applied to give configuration pairs of
different size (bottom row). Using these training pairs, a CNN can learn to
convert small patterns to large ones, achieving a successful inverse RG
transformation. Credit: Tokyo Metropolitan University
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Researchers from Tokyo Metropolitan University have enhanced "super-
resolution" machine learning techniques to study phase transitions. They
identified key features of how large arrays of interacting particles
behave at different temperatures by simulating tiny arrays before using a
convolutional neural network to generate a good estimate of what a
larger array would look like using correlation configurations. The
massive saving in computational cost may realize unique ways of
understanding how materials behave.

We are surrounded by different states or phases of matter, i.e. gases,
liquids, and solids. The study of phase transitions, how one phase
transforms into another, lies at the heart of our understanding of matter
in the universe, and remains a hot topic for physicists. In particular, the
idea of universality, in which wildly different materials behave in similar
ways thanks to a few shared features, is a powerful one. That's why
physicists study model systems, often simple grids of particles on an
array that interact via simple rules. These models distill the essence of
the common physics shared by materials and, amazingly, still exhibit
many of the properties of real materials, like phase transitions. Due to
their elegant simplicity, these rules can be encoded into simulations that
tell us what materials look like under different conditions.

However, like all simulations, the trouble starts when we want to look at
lots of particles at the same time. The computation time required
becomes particularly prohibitive near phase transitions, where dynamics
slows down, and the correlation length, a measure of how the state of
one atom relates to the state of another some distance away, grows larger
and larger. This is a real dilemma if we want to apply these findings to
the real world: real materials generally always contain many more orders
of magnitude of atoms and molecules than simulated matter.

That's why a team led by Professors Yutaka Okabe and Hiroyuki Mori
of Tokyo Metropolitan University, in collaboration with researchers in
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Shibaura Institute of Technology and Bioinformatics Institute of
Singapore, have been studying how to reliably extrapolate smaller
simulations to larger ones using a concept known as an inverse
renormalization group (RG). The renormalization group is a fundamental
concept in the understanding of phase transitions and led Wilson to be
awarded the 1982 Nobel Prize in Physics. Recently, the field met a
powerful ally in convolutional neural networks (CNN), the same
machine learning tool helping computer vision identify objects and
decipher handwriting. The idea would be to give an algorithm the state
of a small array of particles and get it to estimate what a larger array
would look like. There is a strong analogy to the idea of super-resolution
images, where blocky, pixelated images are used to generate smoother
images at a higher resolution.
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Trends found from simulations of larger systems are faithfully reproduced by the
trained CNNs for both Ising (left) and three-state Potts (right) models. (inset)
Correct temperature rescaling is achieved using data at some arbitrary system
size. Credit: Tokyo Metropolitan University

The team has been looking at how this is applied to spin models of
matter, where particles interact with other nearby particles via the
direction of their spins. Previous attempts have particularly struggled to
apply this to systems at temperatures above a phase transition, where
configurations tend to look more random. Now, instead of using spin
configurations i.e. simple snapshots of which direction the particle spins
are pointing, they considered correlation configurations, where each
particle is characterized by how similar its own spin is to that of other
particles, specifically those which are very far away. It turns out
correlation configurations contain more subtle queues about how
particles are arranged, particularly at higher temperatures.

Like all machine learning techniques, the key is to be able to generate a
reliable training set. The team developed a new algorithm called the
block-cluster transformation for correlation configurations to reduce
these down to smaller patterns. Applying an improved estimator
technique to both the original and reduced patterns, they had pairs of
configurations of different size based on the same information. All that's
left is to train the CNN to convert the small patterns to larger ones.

The group considered two systems, the 2D Ising model and the three-
state Potts model, both key benchmarks for studies of condensed matter.
For both, they found that their CNN could use a simulation of a very
small array of points to reproduce how a measure of the correlation g(T)
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changed across a phase transition point in much larger systems.
Comparing with direct simulations of larger systems, the same trends
were reproduced for both systems, combined with a simple temperature
rescaling based on data at an arbitrary system size.

A successful implementation of inverse RG transformations promises to
give scientists a glimpse of previously inaccessible system sizes, and help
physicists understand the larger scale features of materials. The team
now hopes to apply their method to other models which can map more
complex features such as a continuous range of spins, as well as the
study of quantum systems.

  More information: Kenta Shiina et al, Inverse renormalization group
based on image super-resolution using deep convolutional networks, 
Scientific Reports (2021). DOI: 10.1038/s41598-021-88605-w
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