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Laser-driven ion acceleration with deep
learning

May 26 2021, by Michael Padilla

’ Electron phase diagram Deuteron phase diagram
\
L 0@ . 006 (b) (::)
3 =
£ 5 £ 0.04
SN )
0.02
£ 0 =
= =
E £ 0.00
5] <5}
5 > S ~0.02
= =
-10 | —-0.04
-50 0 50 100 -5 0 5 10
Position z [um] Position z [um]

Electron spectrum Deuteron spectrum

10°,
(c) — T [(d)
107 :
£ 1073 £
: :
fland Lol 1072
313 S
10>
i - VA NRAY 103!
0 1 2z 3 4 5 0.0 0.5 1.0
Energy [MeV] Energy [MeV]

Data extracted from the simulation ensemble to train the neural network. Shown
are the phase space diagrams for (a) the electrons and (b) the deuterons at 500 fs
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as well as the corresponding energy spectra in (c) and (d). In particular we
focused on two scalars as figures-of-merit, the peak ion energy Ei circled in (b)
and the hot electron temperature Te shown in (c¢). Credit: Lawrence Livermore
National Laboratory

While advances in machine learning over the past decade have made
significant impacts in applications such as image classification, natural
language processing and pattern recognition, scientific endeavors have
only just begun to leverage this technology. This is most notable in
processing large quantities of data from experiments.

Research conducted at Lawrence Livermore National Laboratory
(LLNL) is the first to apply neural networks to the study of high-
intensity short-pulse laser-plasma acceleration, specifically for ion
acceleration from solid targets. While in most instances of neural
networks they are used primarily for studying datasets, in this work the
team uses them to explore sparsely sampled parameter space as a
surrogate for a full simulation or experiment.

The research is featured in Physics of Plasma and is highlighted as an
Editor's Pick. LLNL postdoctoral appointee Blagoje Djordjevi€ is lead
author and co-authors include Andreas Kemp, Joohwan Kim, Scott
Wilks, Tammy Ma and Derek Mariscal, as well as Raspberry Simpson
from the Massachusetts Institute of Technology. The work was funded
under a Laboratory Directed Research & Development (LDRD) project
and a Department of Energy grant.

"The work primarily serves as a simple demonstration of how we can use
machine learning techniques such as neural networks to augment the
tools we already have," DjordjeviC said. "Computationally expensive
simulations such as particle-in-cell codes will remain a necessary aspect
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of our work, but with even a simple network we are able to train a
surrogate model that can reliably fill out interesting swaths of phase
space."

Djordjevi¢ generated an ensemble of more than 1,000 particle-in-cell
simulations using the EPOCH code. This dataset encompassed a wide
range of experimental parameters of interest that covered several orders
of magnitude. This dataset, from which he extracted physical parameters
of interest such as the ion energy, E; and electron temperature, T, was
then used to train a multilayer, fully connected neural network.

The trained neural network acted as a surrogate model to explore the
parameter space of interest, in particular for feature discovery. It was
demonstrated how the neural network could be used to rapidly explore
this space, mapping the dependency of ion energy on laser intensity and
pulse duration T over several orders of magnitude.

The surrogate also was used to discover an interesting behavior in the
dependency on preplasma gradient length scale Lg and this quantity was
further explored using more elaborate techniques such as ensemble
surrogates and transfer learning. The accelerated ion energy depends
nonlinearly on the profile of the underdense preplasma the laser interacts
with before it hits the main target. While one could expect to find a
resonance value near the relativistic plasma skin depth, it was notable
that the network was able to reliably generate this result despite the
sparsity of data. Lastly, as a proof of concept, it was shown how the
surrogate could be used to extract important physical information from
experimental data that is difficult to observe directly, such as the
gradient length scale.

"Using a sparse but broad dataset of simulations, we were able to train a
neural network to reliably reproduce the trained results as well as

generate results for unsampled regions of parameter space with
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reasonable confidence, Djordjevi€ said. "This resulted in a surrogate
model, which we used to rapidly explore regions of interest."

Derek Mariscal, who serves as Djordjevi¢'s mentor, said the work
outlines a completely new approach to the way the physics of short-pulse
high-intensity laser interactions are studied. Machine learning
approaches are now being widely adopted in the sciences and this is a
foundationally important step forward in developing high-speed, high-
accuracy high-energy density science.
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This image shows a parameter scan of maximum ion energy as a function of
laser pulse duration and intensity generated by a neural network surrogate model.
Overlaid are datapoints from the simulation ensemble to train the neural
network. Credit: Lawrence Livermore National Laboratory
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Mariscal said most short-pulse laser experiments over the past 20 years
have assumed that the delivered laser pulses were essentially Gaussian in
shape, but this is largely an unvalidated assumption.

"The LDRD project is aimed at delivering tailored sources from shaped
high-intensity laser short-pulses while paying close attention to the as-
delivered laser pulses,” he said. "We have found through modeling and a
limited set of experiments that these pulse details can have a profound
impact on the resulting electron and ion sources."

Fundamentally, high energy (keV-to-MeV) electrons are pushed by the
laser interacting with target, and these electrons can be used to accelerate
protons, heavy ions or produce bright X-ray sources. Since there is a
nearly infinite set of possible laser pulse shapes, there is an extremely
broad parameter space to examine through either experiments or
simulations.

"The technique of performing simulation parameter scans is not novel;
however, the power of machine learning is in interpolating between the
sparsely spaced points," Mariscal said. "This 1s a massive savings in
computation power because simulations of this nature can be very
expensive."

Djordjevic said the research verifies the approach of using machine
learning to explore physics of interest by leveraging relatively low-cost
simulation ensembles to cover as much ground as possible.

Work continues

Immediate application of the work will benefit two LLNL projects, an
LDRD project led by Mariscal, where large ensembles will be used to
model the dependency of ion acceleration on shaped laser pulses, and a
project led by LLNL physicists Tammy Ma and Timo Bremer where
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these ensembles will be used to train neural networks for virtual
diagnostics and operations control.

Laser-plasma acceleration already has an important application for the
inertial confinement fusion mission as the National Ignition Facility
(NIF) uses relatively short, picosecond-long laser pulses to accelerate hot
electrons, which in turn generate X-rays for imaging the capsule
implosion at the center of NIF.

"In our immediate future we will be generating a new set of simulations
to support two experiments our team will be fielding this summer on
high-repetition-rate laser systems," Djordjevi¢ said. "The most
important aspect of this project is that we will be shaping short,
femtosecond-scale laser pulses, where NIF's lasers are shaped on the
nanosecond scale. This will require us to run even more simulations
where we not only vary standard parameters such as target foil thickness
and laser intensity and duration, but also spectral phase contributions to
the laser profile."

More information: B. Z. Djordjevi€ et al, Modeling laser-driven ion
acceleration with deep learning, Physics of Plasmas (2021). DOL:
10.1063/5.0045449
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