A Cu-CuI composite catalyst achieves highly efficient production of C2+ chemicals from electrocatalytic CO2 reduction. Credit: LI Hefei and LIU Tianfu

Electrocatalytic CO2 reduction reaction (CO2RR), using clean electricity to convert CO2 and water into chemicals and fuels, is an effective way to simultaneously close the carbon cycle and store renewable energy.

It's difficult to generate multicarbon (C2+) products due to the multiple proton-electron transfer, the complex intermediates and the sluggish C-C coupling step during CO2RR to C2+ products, leading to low selectivity and production rate for C2+ formation.

Recently, a research team led by Prof. Wang Guoxiong, Prof. Gao Dunfeng and Prof. Bao Xinhe from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) designed a Cu-CuI composite catalyst, achieving efficient production of C2+ chemicals from CO2RR.

This study was published in Angewandte Chemie International Edition on April 10.

The researchers designed the catalyst with abundant Cu0/Cu+ interfaces by physically mixing Cu nanoparticles and CuI powders.

Structural characterizations indicated that the Cu-CuI composite underwent significant reconstruction under CO2RR conditions, which was induced by alkaline electrolyte and applied potential.

The high-rate C2+ production over Cu-CuI was ascribed to the presence of residual Cu+ and adsorbed iodine species, which improved CO adsorption and facilitate C-C coupling.

"This work presents a new strategy for designing efficient catalysts towards high-rate CO2RR to C2+ products," said Prof. Wang.

More information: Hefei Li et al, High‐Rate CO 2 Electroreduction to C2+ Products over a Copper‐Copper Iodide Catalyst, Angewandte Chemie International Edition (2021). DOI: 10.1002/anie.202102657

Journal information: Angewandte Chemie International Edition