

Dalian coherent light source reveals oxygen production from three-body photodissociation of water

April 30 2021

Dalian Coherent Light Source revealing three-body photodissociation of water as an important prebiotic-O2 source. Credit: DICP

The provenance of oxygen on Earth and other solar planetary bodies is a fundamental research issue. It is widely accepted that the prebiotic pathway of oxygen production in the Earth's primitive atmosphere was

via vacuum ultraviolet (VUV) photodissociation of CO₂ and subsequent recombination of two O atoms.

In contrast, the photodissociation of H₂O, one of the dominant <u>oxygen</u> carriers, has long been assumed to proceed mainly to produce hydroxyl (OH) and hydrogen (H)-atom primary products, and its contribution to oxygen production is limited.

Recently, a research group led by Prof. Yuan Kaijun and Yang Xueming from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences revealed oxygen production from the three-body photodissociation of water molecule using the Dalian Coherent Light Source.

Their findings were published in *Nature Communications* on April 30.

The VUV free-electron laser facility at the Dalian Coherent Light Source allows the researchers to quantitatively assess the importance of H₂O photochemistry for oxygen production.

"Our <u>experimental results</u> indicated that H₂O under VUV excitation can break into three fragments: one O atom and two H atoms, where the O atoms are in the ¹D and ³P states. The three-body dissociation process is the dominant channel for H₂O photochemistry in the 90-110 nm region," said Prof. Yuan.

The quantitative determination demonstrated that approximately 20% of the H_2O photoexcitation events resulted in O atoms. Considering the water abundance in widely interstellar circumstances such as in interstellar clouds, atmospheres of the solar-family comets, and even in the Earth primitive atmosphere, O production from water photolysis must be an important process. The subsequent recombination of O atoms produced O_2 , which represented an important prebiotic O_2 -production

pathway.

More information: Yao Chang et al. Three body photodissociation of the water molecule and its implications for prebiotic oxygen production, *Nature Communications* (2021). DOI: 10.1038/s41467-021-22824-7

Provided by Chinese Academy Sciences

Citation: Dalian coherent light source reveals oxygen production from three-body photodissociation of water (2021, April 30) retrieved 5 April 2024 from https://phys.org/news/2021-04-dalian-coherent-source-reveals-oxygen.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.