
 

A streamlined approach to determining
thermal properties of crystalline solids and
alloys

April 2 2021, by Steve Nadis

  
 

  

A neural network that carries the full crystal symmetry enables efficient training
for crystalline solids. Credit: Massachusetts Institute of Technology

In a September 2020 essay in Nature Energy, three scientists posed
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several "grand challenges"—one of which was to find suitable materials
for thermal energy storage devices that could be used in concert with
solar energy systems. Fortuitously, Mingda Li—the Norman C.
Rasmussen Assistant Professor of Nuclear Science and Engineering at
MIT, who heads the department's Quantum Matter Group—was already
thinking along similar lines. In fact, Li and nine collaborators (from
MIT, Lawrence Berkeley National Laboratory, and Argonne National
Laboratory) were developing a new methodology, involving a novel
machine-learning approach, that would make it faster and easier to
identify materials with favorable properties for thermal energy storage
and other uses.

The results of their investigation appear this month in a paper for 
Advanced Science. "This is a revolutionary approach that promises to
accelerate the design of new functional materials," comments physicist
Jaime Fernandez-Baca, a distinguished staff member at Oak Ridge
National Laboratory.

A central challenge in materials science, Li and his coauthors write, is to
"establish structure-property relationships"—to figure out the
characteristics a material with a given atomic structure would have. Li's
team focused, in particular, on using structural knowledge to predict the
"phonon density of states," which has a critical bearing on thermal
properties.

To understand that term, it's best to start with the word phonon. "A
crystalline material is composed of atoms arranged in a lattice structure,"
explains Nina Andrejevic, a Ph.D. student in materials science and
engineering. "We can think of these atoms as spheres connected by
springs, and thermal energy causes the springs to vibrate. And those
vibrations, which only occur at discrete [quantized] frequencies or
energies, are what we call phonons."
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The phonon density of states is simply the number of vibrational modes,
or phonons, found within a given frequency or energy range. Knowing
the phonon density of states, one can determine a material's heat-
carrying capacity as well as its thermal conductivity, which relates to
how readily heat passes through a material, and even the
superconducting transition temperature in a superconductor. "For
thermal energy storage purposes, you want a material with a high
specific heat, which means it can take in heat without a sharp rise in
temperature," Li says. "You also want a material with low thermal
conductivity so that it retains its heat longer."

The phonon density of states, however, is a difficult term to measure
experimentally or to compute theoretically. "For a measurement like
this, one has to go to a national laboratory to use a large instrument,
about 10 meters long, in order to get the energy resolution you need," Li
says. "That's because the signal we're looking for is very weak."

"And if you want to calculate the phonon density of states, the most
accurate way of doing so relies on density functional perturbation theory
(DFPT)," notes Zhantao Chen, a mechanical engineering Ph.D. student.
"But those calculations scale with the fourth order of the number of
atoms in the crystal's basic building block, which could require days of
computing time on a CPU cluster." For alloys, which contain two or
more elements, the calculations become much harder, possibly taking
weeks or even longer.

The new method, says Li, could reduce those computational demands to
a few seconds on a PC. Rather than trying to calculate the phonon
density of states from first principles, which is clearly a laborious task,
his team employed a neural network approach, utilizing artificial
intelligence algorithms that enable a computer to learn from example.
The idea was to present the neural network with enough data on a
material's atomic structure and its associated phonon density of states
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that the network could discern the key patterns connecting the two. After
"training" in this fashion, the network would hopefully make reliable
density of states predictions for a substance with a given atomic
structure.

Predictions are difficult, Li explains, because the phonon density of
states cannot by described by a single number but rather by a curve
(analogous to the spectrum of light given off at different wavelengths by
a luminous object). "Another challenge is that we only have trustworthy
[density of states] data for about 1,500 materials. When we first tried
machine learning, the dataset was too small to support accurate
predictions."

His group then teamed up with Lawrence Berkeley physicist Tess Smidt
'12, a co-inventor of so-called Euclidean neural networks. "Training a
conventional neural network normally requires datasets containing
hundreds of thousands to millions of examples," Smidt says. A
significant part of that data demand stems from the fact that a
conventional neural network does not understand that a 3D pattern and a
rotated version of the same pattern are related and actually represent the
same thing. Before it can recognize 3D patterns—in this case, the
precise geometric arrangement of atoms in a crystal—a conventional
neural network first needs to be shown the same pattern in hundreds of
different orientations.

"Because Euclidean neural networks understand geometry—and
recognize that rotated patterns still 'mean' the same thing—they can
extract the maximal amount of information from a single sample," Smidt
adds. As a result, a Euclidean neural network trained on 1,500 examples
can outperform a conventional neural network trained on 500 times
more data.

Using the Euclidean neural network, the team predicted phonon density
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of states for 4,346 crystalline structures. They then selected the materials
with the 20 highest heat capacities, comparing the predicted density of
states values with those obtained through time-consuming DFPT
calculations. The agreement was remarkably close.

The approach can be used to pick out promising thermal energy storage
materials, in keeping with the aforementioned "grand challenge," Li
says. "But it could also greatly facilitate alloy design, because we can
now determine the density of states for alloys just as easily as for
crystals. That, in turn, offers a huge expansion in possible materials we
could consider for thermal storage, as well as many other applications."

Some applications have, in fact, already begun. Computer code from the
MIT group has been installed on machines at Oak Ridge, enabling
researchers to predict the phonon density of states of a given material
based on its atomic structure.

Andrejevic points out, moreover, that Euclidean neural networks have
even broader potential that is as-of-yet untapped. "They can help us
figure out important material properties besides the phonon density of
states. So this could open up the field in a big way."

  More information: Zhantao Chen et al. Direct Prediction of Phonon
Density of States With Euclidean Neural Networks, Advanced Science
(2021). DOI: 10.1002/advs.202004214

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.
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