Remote control for quantum emitters

Remote control for quantum emitters
A light field with time-dependent frequencies - propagating in a waveguide. Due to self-compression the pulse addresses individual quantum emitters. Credit: University of Innsbruck

In order to exploit the properties of quantum physics technologically, quantum objects and their interaction must be precisely controlled. In many cases, this is done using light. Researchers at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences have now developed a method to individually address quantum emitters using tailored light pulses. "Not only is it important to individually control and read the state of the emitters," says Oriol Romero-Isart, "but also to do so while leaving the system as undisturbed as possible." Together with Juan Jose Garcia-Ripoll (IQOQI visiting fellow) from the Instituto de Fisica Fundamental in Madrid, Romero-Isart's research group has now investigated how specifically engineered pulses can be used to focus light on a single quantum emitter.

Self-compressing light pulse

"Our proposal is based on chirped light pulses," explains Silvia Casulleras, first author of the research paper. "The frequency of these light pulses is time-dependent." So, similar to the chirping of birds, the frequency of the signal changes over time. In structures with certain electromagnetic properties—such as waveguides—the frequencies propagate at different speeds. "If you set the initial conditions of the light pulse correctly, the pulse compresses itself at a certain distance," explains Patrick Maurer from the Innsbruck team. "Another important part of our work was to show that the enables the control of individual quantum emitters." This approach can be used as a kind of remote control to address, for example, individual superconducting quantum bits in a waveguide or atoms near a photonic crystal.

Wide range of applications

In their work, now published in Physical Review Letters, the scientists show that this method works not only with or electromagnetic pulses, but also with other waves such as lattice oscillations (phonons) or magnetic excitations (magnons). The research group led by the Innsbruck experimental physicist Gerhard Kirchmair, wants to implement the concept for superconducting qubits in the laboratory in close collaboration with the team of theorists.

Explore further

Cooling magnets with sound

More information: S. Casulleras et al, Remote Individual Addressing of Quantum Emitters with Chirped Pulses, Physical Review Letters (2021). DOI: 10.1103/PhysRevLett.126.103602
Journal information: Physical Review Letters

Citation: Remote control for quantum emitters (2021, March 12) retrieved 9 August 2022 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors