Optimizing disinfection to prevent spread of antibiotic resistance in wastewater

Optimizing disinfection to prevent spread of antibiotic resistance in wastewater
Antibiotic-resistant bacteria, such as Staphylococcus aureus, abound in our wastewater effluents where they could be spreading the resistance gene to other (pathogenic) bacteria. Scientists have now begun to explore ways of preventing this via optimal disinfection processes Credit: Environmental Science and Technology

For nearly a century, improvement in human healthcare has depended heavily on the efficiency with which we can treat bacterial diseases. But today, antibiotic resistance—the ability of certain mutant super-bacteria to block out antibiotics—poses a major threat to healthcare, food security and overall social development worldwide, threatening to upend much medical progress.

Scientists are now urgently attempting to tackle this problem from multiple angles. Professor Yunho Lee at Gwangju Institute of Science and Technology (GIST), Korea, whose contribution is published in the American Chemical Society's Environmental Science and Technology, is looking at it from the point of view of his field of research—. "Bacteria, including antibiotic-resistant bacteria and their , abound in aquatic environments. These are therefore dangerous breeding grounds for antibiotic resistance, where, through a process called , resistant bacteria could transfer the resistance gene to other bacteria, which could then increase the antibiotic resistance levels among the members of the bacterial community, including pathogens. We could reduce this occurrence, however, if we determined which disinfectants and how much of them could safely and efficiently kill the resistant bacteria and gene in our drinking water and wastewater effluents."

As an initial step towards achieving this, Prof. Lee and his team studied the effects of chlorine, ozone, and ultraviolet radiation on the degradation of both extracellular and intracellular (contained within bacteria) methicillin (a type of penicillin) resistance gene, mecA, of the bacteria Staphylococcus aureus in water. Based on using scanning and an analysis of the effect of the disinfectants on the reaction dynamics and cell structure, the scientists developed a reaction kinetics model for each disinfectant versus mecA in addition to a method for measuring the degradation rates. Their experiments verified the effectiveness of their models and method.

"Our findings are a key step in determining the optimal conditions for wastewater disinfection process operations for eliminating mecA and mitigating the spread of antibiotic resistance through our municipal wastewater systems," says Prof. Lee. "In this way, our research significantly contributes to public health protection against infection by ."

Moreover, Prof. Lee is hopeful that their models can be applied to other segments of double stranded DNA as well, such as those of certain viruses. Thus, newer approaches like these could hopefully lead to sustainable solutions to the looming problem and more in the near future.

More information: Yegyun Choi et al, Degradation Kinetics of Antibiotic Resistance Gene mecA of Methicillin-Resistant Staphylococcus aureus (MRSA) during Water Disinfection with Chlorine, Ozone, and Ultraviolet Light, Environmental Science & Technology (2021). DOI: 10.1021/acs.est.0c05274

Provided by GIST (Gwangju Institute of Science and Technology)

Citation: Optimizing disinfection to prevent spread of antibiotic resistance in wastewater (2021, March 3) retrieved 21 July 2024 from https://phys.org/news/2021-03-optimizing-disinfection-antibiotic-resistance-wastewater.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Hospital wastewater favors multi-resistant bacteria


Feedback to editors