How cellular fingertips may help cells 'speak' to each other

How cellular fingertips may help cells "speak" to each other
The lattice light sheet microscopic images of the filopodia by expressing the I-BAR domain protein MIM. The vesicles that were released by the scission of MIM-induced filopodia are highlighted by yellow. The microscope locates at Mimori-Kiyosue lab (RIKEN). Credit: Yuko Mimori-Kiyosue and Shiro Suetsugu

What if you found out that you could heal using only a finger? It sounds like science fiction, reminiscent of the 1982 movie "E.T." Well, it turns out that your body's own cells can do something similarly unexpected. Researchers at Nara Institute of Science and Technology (NAIST) report in a new study in Developmental Cell a means by which cells may use filopodia to communicate instructions for wound closure.

NAIST project leader Shiro Suetsugu has devoted his career to studying how shape themselves, initiate and accept communication among one other. An under-appreciated means of doing so is through filopodia, small finger-like cellular projections that are more commonly known to help certain cells crawl in the body.

"Filopodia are well-recognized as cellular locomotion machinery. Less understood is how filopodia help cells communicate, and the molecular details of how this is done," says Suetsugu.

A focus of this line of research should be the proteins known by the acronym I-BAR. I-BAR proteins are well-known to help bend the , the "skin" of many cells, for filopodia formation and thus facilitate movement.

"We identified an I-BAR protein that severs filopodia," says Suetsugu. An important element of this scission may be mechanical force, a stimulus that your body commonly applies to cells.

"Laser experiments showed that the force required for scission is approximately 8-20 kilopascals. These forces are similar to the 4-13 kilopascals, experienced by cells in blood capillaries," Suetsugu says.

Severed filopodia go on to form structures called , a popular research topic in biology. Extracellular vesicles were used to basically be considered the trash bags of cells, used for disposing cellular waste. However, the vesicles are now considered to be communication packets rather than waste bags. "The pertinence of these vesicles to has piqued researchers' and clinicians' interest," notes Suetsugu.

What does this have to do with cell-cell communication? A simulated cell-scale wound healed faster when it was treated with filopodia-derived extracellular vesicles than if untreated. In other words, an I-BAR protein first induced filopodia scission and vesicle production. These vesicles then sent cellular signals that promoted cell migration toward one another, in a way that may promote wound closure.

By understanding how cells fully use their molecular machinery to send instructions to other cells, Suetsugu is optimistic that will develop new means to safely treat cancer and other diseases.

"Certain BAR proteins are pertinent to cancer cell biology. BAR proteins are also pertinent to cell locomotion. By learning more about how these proteins aid cell-cell communication, we may find better ways to stop cancer cells from spreading," he says.

More information: Filopodium-derived vesicles produced by MIM enhance the migration of recipient cells, Developmental Cell (2021). DOI: 10.1016/j.devcel.2021.02.029

Journal information: Developmental Cell

Provided by Nara Institute of Science and Technology

Citation: How cellular fingertips may help cells 'speak' to each other (2021, March 22) retrieved 6 June 2023 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Highly invasive lung cancer cells have longer 'fingers'


Feedback to editors