Researchers create more accurate model of how some microbes search for nutrients

bacteria
Credit: Unsplash/CC0 Public Domain

Many bacteria swim towards nutrients by rotating the helix-shaped flagella attached to their bodies. As they move, the cells can either 'run' in a straight line, or 'tumble' by varying the rotational directions of their flagella, causing their paths to randomly change course. Through a process named 'chemotaxis,' bacteria can decrease their rate of tumbling at higher concentrations of nutrients, while maintaining their swimming speeds. In more hospitable environments like the gut, this helps them to seek out nutrients more easily.

However, in more -sparse environments, some species of bacteria will also perform 'chemokinesis': increasing their swim speeds as nutrient concentrations increase, without changing their tumbling rates. Through new research published in EPJ E, Theresa Jakuszeit and a team at the University of Cambridge led by Ottavio Croze produced a model which accurately accounts for the combined influences of these two motions.

The team's findings deliver new insights into how self-swimming microbes survive, particularly in harsher environments like soils and oceans. Previously, studies have shown how chemokinesis allows bacteria to band around nutrient sources, respond quickly to short bursts of nutrients, and even form mutually beneficial relationships with algae. So far, however, none of them have directly measured how bacterial swim speeds can vary with nutrient concentration.

Starting from describing run-and-tumble dynamics, Croze's team extended a widely used model for chemotaxis to incorporate chemokinesis. They then applied the new model to predict the dynamics of bacterial populations within the chemical gradients generated by nutrient distributions used in previous experiments. Through their approach, the researchers showed numerically how a combination of both motions can enhance the responses of populations compared with chemotaxis alone. They also presented more accurate predictions of how respond to nutrient distributions—including sources which emit nutrients sporadically. This allowed them to better assess the biological benefits of motility.


Explore further

A novel approach to determine how carcinogenic bacteria find their targets

More information: Theresa Jakuszeit et al, Migration and accumulation of bacteria with chemotaxis and chemokinesis, The European Physical Journal E (2021). DOI: 10.1140/epje/s10189-021-00009-w
Journal information: European Physical Journal E

Provided by Springer
Citation: Researchers create more accurate model of how some microbes search for nutrients (2021, March 17) retrieved 18 April 2021 from https://phys.org/news/2021-03-accurate-microbes-nutrients.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
10 shares

Feedback to editors

User comments