Physicists quantum simulate a system in which fermions with multiple flavors behave like bosons

Physicists quantum simulate a system in which fermions with multiple flavors behave like bosons
Fermions with different spins (indicated by arrows) behave like bosons in three dimensions when the number of spin components increases. Credit: HKUST

In the text book of quantum mechanics, it's stated that bosons and fermions, two types of elementary particles that build the universe, behave in a drastically different way. For example, bosons can share the same quantum state while fermions of the same kind cannot but fill available quantum states one by one.

Nevertheless, modern developments in condensed matter physics and have suggested that the boundary between bosons and fermions can be blurred. One of such examples is a gas of multi-flavor fermions, each identified by a different spin, in which any two flavors interact with one another by the same interaction. Multi-flavor fermions with such a SU(N) symmetry are expected to behave like an ensemble of spinless bosons when the number of different spins in the system becomes very large. The researchers at the Hong Kong University of Science and Technology (HKUST) and the Purdue university use quantum simulation to explore such a 'bosonization' phenomenon with ultracold fermions in three dimensions.

Bosonization has been explored—theoretically and experimentally—in one-dimensional systems. But it is unclear if bosonization occurs in higher dimensional systems, largely because exact solutions to the interacting many-body system are unknown. Here, the researchers show, for the first time, that it does occur in three-dimensional systems by measuring two-body contacts, the central quantity governing all thermodynamic quantities of dilute quantum gases ranging from the energy to the pressure. Evidence of bosonization in contacts thus demonstrates that all other thermodynamic quantities also approach those of bosons.

During the experiment, the researchers controls the number of fermion spins from 1 to 6, and monitor how the contact of fermions approaches that of bosons.

Gyu-Boong Jo, Associate Professor of Physics at HKUST, one of the leaders of the research team, said, "Our experimental observation confirms that multi-flavor fermions can bosonize with the increasing number of spins in three dimensions. It is remarkable to quantum simulate a special type of fermionic systems that are hard to be realized in solids and to address an open question".

This work has demonstrated a method of monitoring contacts as a new tool for exploring quantum matter and its underlying symmetries. In particular, this paves the way for the precise investigation of SU(N)-symmetric fermions, in which nonidentical interact identically, that are not easily available in real materials.


Explore further

Quantum copycat: Researchers find a new way in which bosons behave like fermions

More information: Bo Song et al, Evidence for Bosonization in a Three-Dimensional Gas of SU(N) Fermions, Physical Review X (2020). DOI: 10.1103/PhysRevX.10.041053
Journal information: Physical Review X

Citation: Physicists quantum simulate a system in which fermions with multiple flavors behave like bosons (2020, December 17) retrieved 12 June 2021 from https://phys.org/news/2020-12-physicists-quantum-simulate-fermions-multiple.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
109 shares

Feedback to editors

User comments