Tough, strong and heat-enduring: Bioinspired material to replace plastics

Tough, strong and heat-endure: Bioinspired material to oust plastics
Based on different commercially available raw materials (e.g., TiO2-mica, Fe2O3-mica), a variety of all-natural bioinspired structural materials with different colors can be fabricated. Credit: GUAN Qingfang

Modern life relies heavily on plastics, even though their petroleum-based production creates serious environmental challenges. Industry currently lacks sustainable alternatives due to their limited mechanical properties or complex manufacturing processes. An advanced strategy to design and produce high-performance sustainable structural materials is hence greatly needed.

Just such a new bioinspired material is now available to replace petroleum-based plastics. A team led by Prof. Shu-Hong Yu from the University of Science and Technology of China (USTC) reports a method to manufacture materials with similar as nacre from wood-derived fiber and mica, with adaption to mass production, good processability, and tunable coloration.

Natural nacre has a hierarchically ordered structure at multiscale levels, just like bricks and mortar, enabling it to be of both strength and toughness. Inspired by nacre, the researchers mimic the ordered brick-and-mortar structure using the TiO2 coated mica microplatelet (TiO2-mica) and cellulose nanofiber (CNF) by the proposed directional deforming assembly method.

This method directly presses the hydrogel of TiO2-mica and CNF, while keeps the size on in-plane directions unchanged. The thickness of the hydrogel is dramatically reduced and materials are directly constructed with the highly ordered brick-and-mortar structure.

At the nanoscale, the TiO2 nano-grains on the surface of TiO2-mica lead to efficient energy dissipation by frictional sliding during TiO2-mica pull-out. All the hierarchically ordered structure at multiscale levels contribute to the load redistribution and toughness enhancement.

  • Tough, strong and heat-endure: Bioinspired material to oust plastics
    A mobile phone case prototype made from this bioinspired material. Thanks to its good processability, the material can be fabricated into desired shape and size, showing a vast potential to replace plastics for practical applications, for example, structural support for high-end personal electronic device. Credit: GUAN Qingfang
  • Tough, strong and heat-endure: Bioinspired material to oust plastics
    Because the proposed manufacture method, directional deforming assembly, is effective and scalable, mass production of all-natural bioinspired structural material can be achieved. Credit: GUAN Qingfang

The obtained materials have excellent strength (~281 MPa) and toughness (~11.5 MPa m1/2), which are more than 2 times higher than those of high-performance engineering plastics (e.g., polyamides, aromatic polycarbonate), making it a strong competitor to petroleum-based plastics.

Even better, these materials adapt to temperature ranging from -130 °C to 250 °C, while normal plastics easily soften at high temperature. Therefore, such materials are safer and more reliable at high or variable temperatures.


Explore further

Sustainable biosynthetic transparent films developed for plastic substitute

More information: Qing-Fang Guan et al, An all-natural bioinspired structural material for plastic replacement, Nature Communications (2020). DOI: 10.1038/s41467-020-19174-1
Journal information: Nature Communications

Provided by University of Science and Technology of China
Citation: Tough, strong and heat-enduring: Bioinspired material to replace plastics (2020, November 9) retrieved 16 April 2021 from https://phys.org/news/2020-11-tough-strong-heat-enduring-bioinspired-material.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
145 shares

Feedback to editors

User comments