Could megatesla magnetic fields be realized on Earth?

magnetic field
Credit: CC0 Public Domain

Magnetic fields are used in various areas of modern physics and engineering, with practical applications ranging from doorbells to maglev trains. Since Nikola Tesla's discoveries in the 19th century, researchers have strived to realize strong magnetic fields in laboratories for fundamental studies and diverse applications, but the magnetic strength of familiar examples are relatively weak. Geomagnetism is 0.3−0.5 gauss (G) and magnetic tomography (MRI) used in hospitals is about 1 tesla (T = 104 G). By contrast, future magnetic fusion and maglev trains will require magnetic fields on the kilotesla (kT = 107 G) order. To date, the highest magnetic fields experimentally observed are on the kT order.

Recently, scientists at Osaka University discovered a novel mechanism called a "microtube implosion," and demonstrated the generation of megatesla (MT = 1010G) order magnetic fields via particle simulations using a supercomputer. Astonishingly, this is three orders of magnitude higher than what has ever been achieved in a laboratory. Such high magnetic fields are expected only in celestial bodies like neutron stars and black holes.

Irradiating a tiny plastic microtube one-10th the thickness of a human hair by ultraintense laser pulses produces hot electrons with temperatures of tens of billion of degrees. These hot electrons, along with cold ions, expand into the microtube cavity at velocities approaching the speed of light. Pre-seeding with a kT-order causes the imploding charged particles infinitesimally twisted due to Lorenz force. Such a unique cylindrical flow collectively produces unprecedentedly high spin currents of about 1015 ampere/cm2 on the target axis and consequently, generates ultrahigh magnetic fields on the MT order.

The study conducted by Masakatsu Murakami and colleagues has confirmed that current laser technology can realize MT-order magnetic fields based on the concept. The present concept for generating MT-order magnetic fields will lead to pioneering in numerous areas, including , quantum electrodynamics (QED), and astrophysics, as well as other cutting-edge .


Explore further

How to have a blast like a black hole

More information: M. Murakami et al. Generation of megatesla magnetic fields by intense-laser-driven microtube implosions, Scientific Reports (2020). DOI: 10.1038/s41598-020-73581-4
Journal information: Scientific Reports

Provided by Osaka University
Citation: Could megatesla magnetic fields be realized on Earth? (2020, October 6) retrieved 28 October 2020 from https://phys.org/news/2020-10-megatesla-magnetic-fields-earth.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
102 shares

Feedback to editors

User comments