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Could a stack of 2-D materials allow for supercurrents at ground-
breaking warm temperatures, easily achievable in the household kitchen?

An international study published in August opens a new route to high-
temperature supercurrents at temperatures as "warm" as inside a kitchen
fridge.

The ultimate aim is to achieve superconductivity (i.e., electrical current
without any energy loss to resistance) at a reasonable temperature.

Toward room-temperature superconductivity
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Previously, superconductivity has only been possible at impractically low
temperatures, less than -170°C below zero—even the Antarctic would be
far too warm!

For this reason, the cooling costs of superconductors have been high,
requiring expensive and energy-intensive cooling systems.

Superconductivity at everyday temperatures is the ultimate goal of
researchers in the field.

This new semiconductor superlattice device could form the basis of a
radically new class of ultra-low energy electronics with vastly lower
energy consumption per computation than conventional, silicon-based
(CMOS) electronics.

Such electronics, based on new types of conduction in which solid-state
transistors switch between zero and one (ie, binary switching) without
resistance at room temperature, is the aim of the FLEET Center of
Excellence.

Exciton supercurrents in energy-efficient electronics

Because oppositely-charged electrons and holes in semiconductors are
strongly attracted to each other electrically, they can form tightly-bound
pairs. These composite particles are called excitons, and they open up
new paths toward conduction without resistance at room temperature.

Excitons can in principle form a quantum, "superfluid" state, in which
they move together without resistance. With such tightly bound excitons,
the superfluidity should exist at high temperatures—even as high as
room temperature.
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Bound pairs of electrons and holes (a composite particle called an exciton) move
in a 3D quantum, ‘superfluid’ state inside a ‘stack’ of alternating layers. The
electrons and holes move along separate 2D layers. Credit: Olivia Kong

But unfortunately, because the electron and hole are so close together, in
practice excitons have extremely short lifetimes—just a few
nanoseconds, not enough time to form a superfluid.

As a workaround, the electron and hole can be kept completely apart in
two, separated atomically-thin conducting layers, creating so-called
"spatially indirect" excitons. The electrons and holes move along
separate but very close conducting layers. This makes the excitons long-
lived, and indeed superfluidity has recently been observed in such
systems.
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Counterflow in the exciton superfluid, in which the oppositely charged
electrons and holes move together in their separate layers, allows so-
called "supercurrents" (dissipationless electrical currents) to flow with
zero resistance and zero wasted energy. As such, it is clearly an exciting
prospect for future, ultra-low-energy electronics.

Stacked layers overcome 2-D limitations

Sara Conti who is a co-author on the study, notes another problem
however: atomically-thin conducting layers are two-dimensional, and in
2-D systems there are rigid topological quantum restrictions discovered
by David Thouless and Michael Kosterlitz (2016 Nobel prize), that
eliminate the superfluidity at very low temperatures, above about
–170°C.

The key difference with the new proposed system of stacked atomically-
thin layers of transition metal dichalcogenide (TMD) semiconducting
materials, is that it is three dimensional.

The topological limitations of 2-D are overcome by using this 3-D
superlattice of thin layers. Alternate layers are doped with excess
electrons (n-doped) and excess holes (p-doped) and these form the 3-D
excitons.

The study predicts exciton supercurrents will flow in this system at
temperatures as warm as –3°C.

David Neilson, who has worked for many years on exciton superfluidity
and 2-D systems, says "The proposed 3-D superlattice breaks out from
the topological limitations of 2-D systems, allowing for supercurrents at
–3°C. Because the electrons and holes are so strongly coupled, further
design improvements should carry this right up to room temperature."
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"Amazingly, it is becoming routine today to produce stacks of these
atomically-thin layers, lining them up atomically, and holding them
together with the weak van der Waals atomic attraction," explains Prof
Neilson. "And while our new study is a theoretical proposal, it is
carefully designed to be feasible with present technology."

The study

The study looked at superfluidity in a stack made of alternating layers of
two different monolayer materials (n- and p-doped TMDC transition
metal dichalcogenides WS2 and WSe2).

The paper, "Three-dimensional electron-hole superfluidity in a
superlattice close to room temperature," was published as a Rapid
Communication in Physical Review B in August 2020.

  More information: M. Van der Donck et al. Three-dimensional
electron-hole superfluidity in a superlattice close to room temperature, 
Physical Review B (2020). DOI: 10.1103/PhysRevB.102.060503
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