Good candidate gene for crop improvement

Good candidate gene for crop improvement
Gibberellins inhibits axillary bud outgrowth in Medicago truncatula. Credit: ZHANG Xiaojia

Optimizing plant architecture is an efficient approach for breeders to adapt crops to changing environmental conditions and potentially to improve yields to meet the demands of a growing global population. Plant height and shoot branching play crucial roles in determining plant architecture, and they are mainly regulated by phytohormones, including brassinosteroids (BRs) and gibberellins (GAs).

Medicago truncatula is a model legume species, but the molecular mechanisms underlying the control of axillary bud outgrowth by GAs in M. truncatula remain largely unknown.

In a study published in the Journal of Experimental Botany, researchers from the Xishuangbanna Tropical Botanical Garden (XTBG) report the identification and characterization of the dwarf and increased branching 1 (dib1) mutant in M. truncatula, which exhibits extreme dwarfism and an increased number of lateral branches.

The researchers conducted phylogenetic analysis and amino acid sequencing. The results showed that DIB1 encodes a gibberellin 3β-hydroxylase (GA3ox) enzyme, catalyzing the final step of the biosynthetic pathway for bioactive GAs.

They further found that endogenous concentrations of GA4 and GA1 were decreased in the dib1 mutant. The exogenous application of GA3 rescued the mutant phenotypes, indicating that DIB1 was necessary for GA biosynthesis in M. truncatula.

The results suggested that DIB1, a GA biosynthetic gene, might positively regulate the expression of MtBRC1, a key integrator of numerous signals, to control axillary bud outgrowth via influencing the biosynthesis of bioactive GAs in M. truncatula.

"Our findings thus shed light on the control of axillary bud outgrowth by GAs in legumes. DIB1 could be a good candidate gene for breeders to optimize plant architecture for crop improvement," said Prof. Chen Jianghua, principal investigator of the study.


Explore further

Study reveals a framework for trifoliate leaf-pattern formation in leguminous plants

More information: Xiaojia Zhang et al. Dwarf and Increased Branching 1 controls plant height and axillary bud outgrowth in Medicago truncatula, Journal of Experimental Botany (2020). DOI: 10.1093/jxb/eraa364
Citation: Good candidate gene for crop improvement (2020, October 12) retrieved 4 December 2020 from https://phys.org/news/2020-10-good-candidate-gene-crop.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
7 shares

Feedback to editors

User comments