Novel approach in organic chemistry enables boron to be added to molecules with high precision

Novel approach in organic chemistry enables boron to be added to molecules with high precision
A simple chloride catalyst enables selective C–H borylation under mild photochemical conditions. Credit: University of Bristol

A major goal in organic synthesis is to develop efficient reactions to convert feedstock chemicals (otherwise known as raw or natural materials) into valuable reagents that can be used to create pharmaceuticals and agrochemicals.

A powerful approach to this core scientific challenge is to convert carbon– into carbon–heteroatom bonds. However, are composed of a "sea" of carbon–hydrogen bonds, making it very difficult to achieve high selectivity for reaction at a specific .

To add another layer of difficulty, carbon–hydrogen bonds are generally unreactive, which means that harsh reaction conditions are required, often using high temperatures and expensive precious metal catalysts.

Now, scientists at the University of Bristol have discovered a mechanistically unique approach to facilitate this process in a way that is more efficient and less costly than traditional methods.

Their findings, as reported in the journal Nature today open up new possibilities for converting feedstock chemicals into valuable boron-containing compounds, which play a major role in the manufacture of numerous products, from medicines to TV screens.

This latest study, led by Professor Varinder Aggarwal FRS and Dr. Adam Noble from the School of Chemistry, describes how a process known as C–H borylation can be used to convert carbon–hydrogen bonds of organic molecules into carbon–boron bonds, which are some of the most versatile in .

"An important feature of this new C–H borylation is that, unlike all previously reported methods, these reactions proceed at ambient temperature and do not require a metal catalyst, which can significantly reduce their cost," says Professor Aggarwal.

The study involved using a simple chloride catalyst in place of precious metals.Key to the success of the reaction was the use of violet-light irradiation, which provides the chloride catalyst with enough energy to break unreactive bonds.

"Crucially, the mild reaction conditions of this photo-induced C–H borylation enable a laser-like precision as to which of the myriad of C–H bonds is transformed. In addition, since the mechanism is distinct from those that use metal catalysts, this new method allows the synthesis of boron-containing organic molecules that cannot be accessed using existing approaches, thus generating new opportunities for the synthesis of these valuable compounds from feedstock chemicals."

More information: Chao Shu et al. Metal-free photoinduced C(sp3)–H borylation of alkanes, Nature (2020). DOI: 10.1038/s41586-020-2831-6

Journal information: Nature

Citation: Novel approach in organic chemistry enables boron to be added to molecules with high precision (2020, October 29) retrieved 7 December 2023 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Iridium and 2-methylphenanthroline accelerate catalytic borylation reactions


Feedback to editors