

Nanoparticle-based computing architecture
for nanoparticle neural networks

September 2 2020, by Thamarasee Jeewandara

The nanoparticle-based von Neumann architecture (NVNA) on a lipid nanotablet
(LNT) chip. (A) Schematic of NVNA-LNT. The LNT is operated with software
composed of Instruction DNAs in solution and hardware composed of
nanoparticles on a lipid bilayer. The hardware consists of a data storage unit,

1/12

NM; an output unit, NR; and a processing unit, NF. A set of Instruction DNAs
programs logic operation using a kinetic difference between nanoparticle
reactions with memory storage state. (B) LNT protocol: (i) data storage on NM,
(ii) neural network (NNN) operation by Instruction DNA set addition, and (iii)
reset by dehybridizing DNAs for the next executions. (C) Time-lapse dark-field
microscopic imaging can differentiate each nanoparticle on LNT via scattering
color and mobility. The non-labeled nanoparticles are NM. (D) Molecular
information storage on the NM changes the exposed single-stranded domain. (E)
YES, gate operation results. Input “1” results in output “1,” printing the NF-NR.
Otherwise, all NFs are trapped to NM and exhibit no reaction on NR, which is
output “0.” Credit: Science Advances, doi: 10.1126/sciadv.abb3348

Scalable nanoparticle-based computing architectures have several
limitations that can severely compromise the use of nanoparticles to
manipulate and process information through molecular computing
schemes. The von Neumann architecture (VNA) underlies the operations
of multiple arbitrary molecular logic operations in a single chip without
rewiring the device. In a new report, Sungi Kim and a team of scientists
at the Seoul National University in South Korea developed the
nanoparticle-based VNA (NVNA) on a lipid chip. The nanoparticles on
the lipid chip functioned as the hardware—featuring memories,
processors and output units. The team used DNA strands as the software
to provide molecular instructions to program the logic circuits. The
nanoparticle-based von Neuman architecture (NVNA) allowed a group
of nanoparticles to form a feed-forward neural network known as a
perceptron (a type of artificial neural network). The system can
implement functionally complete Boolean logical operations to provide a
programmable, resettable and scalable computing architecture and
circuit board to form nanoparticle neural networks and make logical
decisions. The work is now published on Science Advances.

The von Neumann architecture in modern computing

2/12

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651761/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651761/
https://phys.org/search/?search=von+Neumann+architecture+&s=0
https://www.sciencedirect.com/topics/veterinary-science-and-veterinary-medicine/perceptron
https://www.sciencedirect.com/topics/veterinary-science-and-veterinary-medicine/perceptron
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikjc300/ikj2g2_Logical__Boolean__Operators.htm
https://advances.sciencemag.org/content/6/35/eabb3348
https://advances.sciencemag.org/content/6/35/eabb3348

and molecular computing

Electronic computers of the past could only run a fixed program and
researchers had to physically rewire and restructure processes to
reprogram such machines. The von Neumann architecture (VNA)
developed by John von Neumann in 1945 and later cited by Alan Turing
in his proposal for the automatic computing engine, details a stored-
program computer to execute a set of instructions. The system processed
information by sequentially fetching the stored data and instructions
from the memory to generate outputs. The powerful programmability of
the VNA is applicable for modern computers and in quantum computing
.

Molecular computing with nanostructures can allow a variety of
technologies such as nanoparticle logic gates, single-molecule biosensors
and logic sensing, although such systems are limited to a single program
much like early electronic computers. The limits arose since researchers
incorporated the software (function) and nanostructural hardware as a
single unit. To overcome this challenge, they can include lipid bilayers to
compartmentalize molecules and nanoparticles. Kim et al. had previously
developed a computing platform with nanoparticles on a lipid bilayer to
form a nano-bio-computing lipid nanotablet (LNT). In this work, they
designed and realized a nanoparticle-based von Neuman architecture
(NVNA) platform for molecular computing on a lipid nanotablet (LNT).

3/12

https://ieeexplore.ieee.org/abstract/document/238389
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780198565932.001.0001/acprof-9780198565932
https://science.sciencemag.org/content/334/6052/61.abstract
https://www.nature.com/articles/nnano.2014.156
https://pubs.acs.org/doi/abs/10.1021/jacs.7b12772
https://pubs.acs.org/doi/abs/10.1021/jacs.8b04319
https://pubs.acs.org/doi/abs/10.1021/ar500051r
https://phys.org/news/2019-03-nano-bio-computing-lipid-nanotablet.html

Nanoparticle neural network (NNN) for a functionally complete 3-input system.
The system can be represented with a multi-layer perceptron diagram with three
layers (input, hidden and output layers), where xi is an input, wi,j and vj are
weights, and y is an output. Each layer has three input nodes, four hidden nodes
and one output layer, respectively. NF calculates a weighted sum of inputs and a
bias and can be activated with an activation function of Heaviside step function.
The NM0 and the NM1 Trap DNAs can be represented by discrete weights of 1
and -1, respectively, as the NM0 Trap DNA deactivates the NF at input 0 and the
NM1 Trap DNA deactivates the NF at input 1. As they set the threshold for
activation function as 0, the bias is required to balance the positive and negative
values of the weighted sum of inputs. The bias is defined as the number of NM0
Trap DNA. Activated NFs can bind to NR as output “1”. Credit: Science
Advances, doi: 10.1126/sciadv.abb3348

 Hardware and software of the nanoparticle-based von Neuman
architecture (NVNA)

4/12

The team created a stored-program device to implement molecular
computing via the von Neumann architecture with nanoparticles, while
including the concept of memory to store molecular information. They
separated the software and hardware for scalability of information
processing in the lipid nanotablet (LNT) to perform multiple
computational tasks without developing a new device each time. To
compose the LNT hardware chip, they used three types of DNA-
modified nanoparticles, including the nano-memory (NM), nano-floater
(NF), and nano-reporter (NR). The nano-memory and nano-reporter
were immobile nanoparticles that functioned as a molecular information
storage device and output unit, respectively. They referred to the mobile
nanoparticles as nano-floaters that freely diffused and collided with
immobile particles. The scientists functionalized the plasmonic
nanoparticles by modifying them with thiolated DNA oligonucleotides.
Then for data storage, they loaded different concentrations of NF, NM
and NR nanoparticles on to the lipid nano-tablet (LNT). To develop the
software, Kim et al. used a set of instruction DNAs in solution, and the
logic operation followed three steps.

The team first stored the molecular information on the nano-memory
(NM) unit via DNA hybridization. For example, a single NM particle
could form a one-bit memory device in which zero or one represented
the bistable state. In the second step, they performed the logic operation
as a combination of instruction DNAs, to initiate competitive
nanoparticle-nanoparticle assembly with different kinetics based on the
nano-memory state. To reset the computer chip to its initial state, Kim et
al. added a reset solution (low salt buffer and high temperature), which
detached the input and instructional DNA base pairings on the chip.

5/12

https://pubmed.ncbi.nlm.nih.gov/8282109/
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dna-hybridization

Software programming strategy using Instruction DNAs. (A) Reaction kinetics
of three types of Instruction DNAs. The addition of 8 nM NM0 and NM1 Trap
DNAs allows fast logic-allowed trapping (solid lines) of NFs to NM with the “0”
and “1” states, respectively, and no or slow logic-forbidden binding (dotted
lines). The 1 nM Report DNA addition shows binding of NFs to NRs with a lag
time. (B) Programming of NOT gate from an If-Then-Else statement to a
combination of Instruction DNAs coding the NNN. (C) NOT gate operation in
the LNT. For input “0,” the NF has no specific interaction with M0 and
generates NF—NR assemblies (cyan dotted circle) as the output “1” (reporting
ratio > 0.2, green box). For DNA input “1” stored in the NM, the NFs are
trapped to the NM1 (yellow dotted circle), resulting in the output “0” (reporting

6/12

ratio =

 Programming strategy

Kim et al. used two types of instruction DNAs named Trap and Report DNAs to
provide instructions for the nano-floaters. They specifically designed Trap DNA
to bind the nano-floaters to form logical decision making nanoparticles. The
team optimized the concentration of instruction DNAs and the density of each
nanoparticle to induce fast trapping kinetics compared with reporting. The
competitive trapping and reporting behaviors resulted in binding kinetics
expressed as an if-then-else statement, allowing them to first search whether the
If condition satisfied TRUE or FALSE operations and then operate the "then" or
"else" statement. The scientists implemented the logical operation by mixing trap
DNA and Report DNA in the NVNA-LNT chip. During the process, they noted
the assembly of a few logically forbidden states, which they further optimized.

7/12

https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/if-then-else-statement

Programming a two-input Boolean logic gate with NNN and demonstration of a reset
function. (A) Single-layer perceptron for an AND logic gate. The nanoparticle network at
four input combinations is represented with the solid lines indicating the nanoparticle
assembly reaction and the dotted lines indicating no or a suppressed reaction. The output
“1” (blue box) is represented by NF—NR reporting (blue dots) to NF—NM trapping
(green dots) over 0.2 (green box). (B) Multiple executions of logic gates in a single chip
by resetting after each execution (yellow box). (C) Execution of INH and NOR logic
gates using weight coding. (D) Execution of OR, NAND, XOR, and XNOR logic gates
using multilayer perceptron with two types of NF. The output “1” is represented by a

8/12

reporting ratio between 0.2 and 0.6 because a single NF between two NFs generates the
output “1.”Credit: Science Advances, doi: 10.1126/sciadv.abb3348

Nanoparticle neural network with reset and reusability

The team represented the reaction network between multiple nanoparticles
connected via instruction DNAs, using a perceptron—a type of artificial neural
network for a binary classifier. They expanded the programming strategy to
construct the nanoparticle neural network (NNN) on the LNT platform and
implemented arbitrary Boolean logic circuits for two-bit inputs. Then they
calculated the number of nanoparticle nodes needed to functionally complete
Boolean logic operators on the neural network. The hardware relied on
covalently modified nanostructures on a lipid chip for multiple executions. They
tested the reset function of the system for reusability by dehybridizing all DNA
assemblies after exchanging the buffer solution in the setup. The reset allowed
thiolated DNAs alone to remain on the nanoparticles, thereby returning to the
initial state for the next function.

9/12

https://phys.org/tags/neural+network/
https://phys.org/tags/neural+network/
https://ieeexplore.ieee.org/abstract/document/6371932

Execution of a 2-bit comparator with decision tree on a single chip. (A) Digital logic
circuit and NNN diagram for AB > CD, and operation result of 16 combinations of two
2-bit input AB and CD. (B) Decision trees for the magnitude comparator. The two-
layered tree structure generates three results, indicating the relative magnitude of two
2-bit binary inputs. Four-bit inputs of 1111, 0110, and 1000 result in AB = CD, AB CD
respectively. Scale bars, 1 μm. Credit: Science Advances, doi: 10.1126/sciadv.abb3348

10/12

The decision-making process and the fan-out logic gate

Kim et al. then explored the system with a sequential decision tree. The decision
tree resembled a flowchart to produce a final decision of YES or NO in the
nanoparticle neural network. Due to their nanoscale geometric features and
optical properties, the plasmonic nanoparticle core of the lipid nanotablet was
critical for computing. As the number of nanoparticle nodes and the
accompanying complexity of the logic circuit increased, the reaction kinetics
remained identical due to parallel reactions of the multilayer perceptron. The
team used powerful programmability and the reset function of the setup to
sequentially operate the two-bit comparator.

In this way, Sungi Kim and colleagues developed a nanoparticle perceptron with
the nanoparticle-based von Neuman architecture (NVNA) on a lipid nanotablet
(LNT) chip and explored the system with a sequential decision-making tree. The
setup included a reset function for reusability. The nanoparticle-based computing
architecture and the nanoparticle neural network (NNN) provided a platform for
molecular computing alongside instruction DNAs. The process allowed
scalability and paves the way to use nanoparticles in deep learning, neural
interfaces and neuromorphic computing to manage and analyze complex
biomolecular information. This computing architecture can be embedded in
microfluidics to mimic and interrogate complex living systems to develop smart
drug screening systems.

 More information: Sungi Kim et al. Nanoparticle-based computing
architecture for nanoparticle neural networks, Science Advances (2020). DOI:
10.1126/sciadv.abb3348

Maxim P. Nikitin et al. Biocomputing based on particle disassembly, Nature
Nanotechnology (2014). DOI: 10.1038/nnano.2014.156

Kevin M. Cherry et al. Scaling up molecular pattern recognition with DNA-
based winner-take-all neural networks, Nature (2018). DOI:
10.1038/s41586-018-0289-6

11/12

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/decision-tree
https://www.sciencedirect.com/topics/engineering/comparator
https://phys.org/tags/nanoparticles/
https://www.nature.com/articles/s41551-018-0343-6
https://www.nature.com/articles/s41551-018-0343-6
https://www.nature.com/articles/s41587-019-0321-x
https://www.nature.com/articles/s41587-019-0321-x
https://www.nature.com/articles/s41467-019-13877-w
https://www.nature.com/articles/s41467-019-13877-w
http://dx.doi.org/10.1126/sciadv.abb3348
http://dx.doi.org/10.1126/sciadv.abb3348
http://dx.doi.org/10.1038/nnano.2014.156
http://dx.doi.org/10.1038/s41586-018-0289-6
http://dx.doi.org/10.1038/s41586-018-0289-6

© 2020 Science X Network

Citation: Nanoparticle-based computing architecture for nanoparticle neural networks (2020,
September 2) retrieved 26 April 2024 from https://phys.org/news/2020-09-nanoparticle-based-
architecture-nanoparticle-neural-networks.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

12/12

https://phys.org/news/2020-09-nanoparticle-based-architecture-nanoparticle-neural-networks.html
https://phys.org/news/2020-09-nanoparticle-based-architecture-nanoparticle-neural-networks.html
http://www.tcpdf.org

