
 

Machine learning homes in on catalyst
interactions to accelerate materials
development
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A machine learning technique rapidly rediscovered rules governing
catalysts that took humans years of difficult calculations to reveal—and
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even explained a deviation. The University of Michigan team that
developed the technique believes other researchers will be able to use it
to make faster progress in designing materials for a variety of purposes.

"This opens a new door, not just in understanding catalysis, but also
potentially for extracting knowledge about superconductors, enzymes,
thermoelectrics, and photovoltaics," said Bryan Goldsmith, an assistant
professor of chemical engineering, who co-led the work with Suljo
Linic, a professor of chemical engineering.

The key to all of these materials is how their electrons behave.
Researchers would like to use machine learning techniques to develop
recipes for the material properties that they want. For superconductors,
the electrons must move without resistance through the material.
Enzymes and catalysts need to broker exchanges of electrons, enabling 
new medicines or cutting chemical waste, for instance. Thermoelectrics
and photovoltaics absorb light and generate energetic electrons, thereby
generating electricity.

Machine learning algorithms are typically "black boxes," meaning that
they take in data and spit out a mathematical function that makes
predictions based on that data.

"Many of these models are so complicated that it's very difficult to
extract insights from them," said Jacques Esterhuizen, a doctoral student
in chemical engineering and first author of the paper in the journal 
Chem. "That's a problem because we're not only interested in predicting
material properties, we also want to understand how the atomic structure
and composition map to the material properties."

But a new breed of machine learning algorithm lets researchers see the
connections that the algorithm is making, identifying which variables are
most important and why. This is critical information for researchers
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trying to use machine learning to improve material designs, including for
catalysts.

A good catalyst is like a chemical matchmaker. It needs to be able to
grab onto the reactants, or the atoms and molecules that we want to
react, so that they meet. Yet, it must do so loosely enough that the
reactants would rather bind with one another than stick with the catalyst.

In this particular case, they looked at metal catalysts that have a layer of
a different metal just below the surface, known as a subsurface alloy.
That subsurface layer changes how the atoms in the top layer are spaced
and how available the electrons are for bonding. By tweaking the
spacing, and hence the electron availability, chemical engineers can
strengthen or weaken the binding between the catalyst and the reactants.

Esterhuizen started by running quantum mechanical simulations at the
National Energy Research Scientific Computing Center. These formed
the data set, showing how common subsurface alloy catalysts, including
metals such as gold, iridium and platinum, bond with common reactants
such as oxygen, hydroxide and chlorine.

The team used the algorithm to look at eight material properties and
conditions that might be important to the binding strength of these
reactants. It turned out that three mattered most. The first was whether
the atoms on the catalyst surface were pulled apart from one another or
compressed together by the different metal beneath. The second was
how many electrons were in the electron orbital responsible for bonding,
the d-orbital in this case. And the third was the size of that d-electron
cloud.

The resulting predictions for how different alloys bind with different
reactants mostly reflected the "d-band" model, which was developed
over many years of quantum mechanical calculations and theoretical
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analysis. However, they also explained a deviation from that model due
to strong repulsive interactions, which occurs when electron-rich
reactants bind on metals with mostly filled electron orbitals.

  More information: Jacques A. Esterhuizen et al. Theory-Guided
Machine Learning Finds Geometric Structure-Property Relationships for
Chemisorption on Subsurface Alloys, Chem (2020). DOI:
10.1016/j.chempr.2020.09.001
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