Functional ion nanochannel-based approach to detect tyrosine phosphorylation

Functional ion nanochannel-based approach to detect tyrosine phosphorylation
Functional nanochannels for detecting tyrosine phosphorylation. Credit: QING Guangyan

Tyrosine phosphorylation (pTyr) can initiate cellular signaling and govern cellular functions. Its dysregulation is implicated in many diseases, especially cancers. Specific detection of pTyr-is important for developing targeted anti-cancer drugs.

The commonly-used approach for detecting pTyr relies on the radiometric assay with [γ-32P]-ATP as a substrate, which suffers from the use of harmful radioactive reagent and generation of radioactive waste.

Antibody-based methods and some synthetic chemical sensors have also been developed to achieve specific detection of pTyr for inhibitor screening assays. However, these methods are not cost-effective.

Recently, a research group led by Prof. Qing Guangyan from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences developed a new approach based on a functional ion nanochannel platform for the specific sensing of .

The results were published in the Journal of the American Chemical Society on Sept. 7.

By mimicking the multiple interactions of guanidinium groups from arginine residues with phosphorylated residue in proteins, the researchers designed a functional polymer bearing rich guanidinium groups to modify an ion nanochannel substrate, and developed a functional nanochannel device.

The polymer could recognize the phosphorylated peptide (PP) through the binding of guanidinium group with phosphate group in PP, and amplify such recognition to the conformational change of the polymer itself. Further, the conformational change was converted into the "OFF-ON" change of nanochannel ion flux, finally achieving the detection of PP by means of the change in ionic current.

The specific recognition for pTyr peptide from its counterparts pSer and pThr was achieved by constructing a simple nanofluidic logic gate when Ca2+ was introduced as a competitive binding element.

Importantly, the excellent pTyr sensing capacity makes the functional nanochannels available for real-time monitoring of pTyr process by tyrosine kinase on a peptide substrate, even in a complicated condition, and the proof-of-concept study of monitoring kinase activity demonstrates its potential in kinase inhibitor screening.

Explore further

New target in certain leukemias discovered, could be treated with existing drug

More information: Minmin Li et al. Functional Nanochannels for Sensing Tyrosine Phosphorylation, Journal of the American Chemical Society (2020). DOI: 10.1021/jacs.0c06510
Citation: Functional ion nanochannel-based approach to detect tyrosine phosphorylation (2020, September 17) retrieved 25 July 2021 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments