

Researchers fabricate high-quality transparent ceramic

September 9 2020, by Zhang Nannan

Credit: CC0 Public Domain

Mid-infrared lasers have been widely used in imaging, detection, diagnostics, environmental monitoring, medicine, industry, defense and others. For mid-infrared laser systems, low phonon energy gain materials

are key factors.

Among these mid-infrared materials, Er^{3+} -doped CaF_2 transparent ceramics are promising candidate materials because of their ultra-low phonon energy as well as excellent physical, chemical, and <u>optical</u> properties, which quickly attract the attention of researchers. However, traditional preparation methods can't obtain high-quality Er^{3+} -doped CaF_2 transparent ceramics.

Recently, a research team led by Prof. Zhang Long from the Shanghai Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has developed a high quality Er^{3+} -doped CaF_2 transparent ceramics by single crystal ceramization. Their study was published in Journal of the European Ceramic Society.

In this research, the researchers grew the 3 at% Er^{3+} -doped CaF₂ single crystal using the temperature gradient technique (TGT). The <u>single</u> crystal was cut into 5*5*3 mm³ cuboid, and put into a graphite mold. It underwent plastic deformation and hot-pressing sintering in a vacuum hot press furnace, after which the researchers obtained the Er^{3+} -doped CaF₂ transparent <u>ceramic</u>. The ceramic sample was polished to 1 mm for characterization.

They discovered that the Er^{3+} -doped CaF_2 transparent ceramics possess an obvious polycrystalline structure, perfect transmittance, and excellent mid-infrared performance, superior to the hot-pressed and hot-formed Er^{3+} -doped CaF_2 ceramics.

In addition, the paper discusses the influencing factor for the slight change of Er^{3+} -doped CaF₂ transparent ceramics in optical performance.

More information: Yiguang Jiang et al. Er 3+ -doped CaF 2 polycrystalline ceramic with perfect transparency for mid-infrared laser,

Journal of the American Ceramic Society (2020). DOI: 10.1111/jace.17308

Provided by Chinese Academy of Sciences

Citation: Researchers fabricate high-quality transparent ceramic (2020, September 9) retrieved 27 June 2024 from https://phys.org/news/2020-09-fabricate-high-quality-transparent-ceramic.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.