Volcanic emissions can cause changes in the atmosphere over a long time

Volcanic emissions can cause changes in the atmosphere over a long time
Super volcanoes can cause major destruction. This is the caldera after the volcano Los Chocoyos in Guatemala, now the beautiful Lake Atitlán. Credit: Steffen Kutterolf/GEOMAR

The super volcano Los Chocoyos in Guatemala, Central America, erupted about 84,000 years ago, and was one of the largest volcanic events of the last 100,000 years.

Recent petrological data show that the Los Chocoyos eruption released large amounts of sulfur and ozone-depleting chlorine and bromine gases.

The volcano was part of the well-known Ring of Fire, located like a horseshoe around and in the Pacific. This is an , and here are 75% of all known volcanoes (both active and dormant). The volcanoes Atitlán and Tolimán followed the Los Chocoyos eruption, and remain active today.

In an eruption, super volcanoes can cause enormous destruction locally, but they also have major impacts across the globe due to the huge gas and dust emissions to the atmosphere. And as one research group now shows, they can cause major changes in the atmosphere over several years.

Weakened ozone layer

Based on the Los Chocoyos eruption, scientists from the University of Oslo (UiO), GEOMAR and NCAR simulated emissions of gaseous sulfur and halogen to the atmosphere in pre-industrial times. They used the American earth system Community Earth System Model (CESM)/Whole Atmosphere Community Climate Model (WACCM) with interactive 'emissions' of volcanic aerosols and gases into the atmosphere.

The runs showed that elevated amounts of sulfate and aerosol optical depth (AOD) from the eruption would persist for five years in the atmosphere, and the amount of halogen would remain high for almost 15 years.

As a consequence of this change in atmospheric chemistry, the ozone layer would collapse. The researchers found an 80 % reduction in the ozone layer as a global average.

"Ozone weakening on this scale could cause a 550 % increase in UV radiation in the first five years after the eruption, which could have very serious potential impacts on humans and the biosphere," says Hans Brenna, first author of the study. He is a doctoral student at the Department of Geosciences at UiO and a researcher at the Norwegian Meteorological Institute.

The effect on the climate after such a huge volcanic eruption will last up to several decades.

"Recovery to pre-eruption ozone levels and climate takes 15 years and 30 years, respectively, according to results from the simulations. The long-lasting effect of cooling the Earth's surface is sustained by an immediate increase in sea ice area in the Arctic, followed by a decline in ocean heat transport at 60° N to the Arctic Ocean. This effect persists for up to 20 years," says Kirstin Krüger, a professor of meteorology at UiO.

The effect of the eruption strikes differently

The researchers also found that the impact of volcanic eruptions would be different in different parts of the globe. In the the eruption would cause cooling due to increased atmospheric aerosols, which would increase precipitation and result in a decrease in primary production of more than 25 %. They also found that sea ice cover would increase by 40 % in the first 3 years.

At the equator and in the northern parts of Africa, the eruption would cause increased humidity and result in much higher primary production in the first five years after the . There would be a shift of the low pressure zone at the equator known as the Intertropical Convergence Zone (ITCZ), which would move more towards southern latitudes. In addition, the sea would react with El Niño-like mechanisms during the first three years; those will also shift southward.

"Because the model uncertainties for climate response and in volcanic eruptions are large, such simulations as ours would have to be supported by physical samples from paleo-archives such as ice and sediment cores and a coordinated model intercomparison," Brenna says.

Atmospheric chemistry—an important discipline for climate research

Atmospheric chemistry is a branch of atmospheric science in which the chemistry of the Earth's atmosphere and of other planets is studied. It is a typical interdisciplinary field of research and is based on several disciplines and methods, such as environmental chemistry, meteorology, computer modeling, physics and geology, to name a few. Research is increasingly linked to other fields, such as climate studies.

The lead author of this article, Hans Brenna, received the Outstanding Student Poster and PICO (OSPP) Awards from the European Geosciences Union (EGU) in 2018 for the poster titled "Global ozone depletion and increase of UV radiation caused by pre-industrial tropical volcanic eruptions."

Based on this poster, they were invited by EGU to write an article, and it is now in the interactive open-access journal Atmospheric Chemistry and Physics.

Explore further

Research reveals how volcanic eruptions affect El Niño

More information: Hans Brenna et al. The potential impacts of a sulfur- and halogen-rich supereruption such as Los Chocoyos on the atmosphere and climate, Atmospheric Chemistry and Physics (2020). DOI: 10.5194/acp-20-6521-2020
Provided by University of Oslo
Citation: Volcanic emissions can cause changes in the atmosphere over a long time (2020, August 6) retrieved 22 October 2020 from https://phys.org/news/2020-08-volcanic-emissions-atmosphere.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments