
 

Predicting X-ray absorption spectra from
graphs
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A schematic showing the steps for training a machine learning model to predict
an x-ray absorption (XAS) spectrum based on the known structure of a molecule.
The molecule's structure is represented as a graph, with atoms as nodes and
chemical bonds as edges. This representation captures the connectivity of
atoms—here, carbon (C), oxygen (O), nitrogen (N), and hydrogen (H)—and the
type and length of the chemical bonds connecting them. The resulting XAS
spectrum contains rich information about the local chemical environment of
absorbing atoms, such as their symmetry and the number of neighboring atoms.
Credit: Brookhaven National Laboratory

X-ray absorption spectroscopy (XAS) is a popular characterization
technique for probing the local atomic structure and electronic
properties of materials and molecules. Because atoms of each element
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absorb X-rays at characteristic energies, XAS is well suited for mapping
out the spatial distribution of elements in a sample. Typically, scientists
perform XAS experiments at synchrotron light sources—such as the
National Synchrotron Light Source II (NSLS-II)—because they provide
very bright, tunable X-rays. By measuring the absorbance in a sample at
varying X-ray energies, scientists can generate a plot called an X-ray
absorption spectrum.

"XAS is a key capability for users at Brookhaven National Laboratory's
NSLS-II and the Center for Functional Nanomaterials (CFN), both U.S.
Department of Energy (DOE) Office of Science User Facilities that are
open to the scientific research community," said Deyu Lu, a physicist in
the CFN Theory and Computation Group. "With the right analysis tools,
XAS can provide tremendous insights in nanoscience research. The
development of such tools is central to our mission as user facilities."

Classifying local chemical environments

Different regions of the X-ray absorption spectrum are sensitive to
different aspects of the material properties in a sample. For example, the
X-ray absorption near-edge structure (XANES) focuses on the near-edge
region of the spectrum, right above the onset energy sufficient to excite
an electron from the inner shells of an atom to an empty state. XANES
encodes rich information about the local chemical environment of
absorbing atoms in a sample—including their geometric coordination,
symmetry, and charge state (the number of electrons gained or lost from
chemical bonding). But analyzing spectral data is very challenging
because of their abstract nature.

"Unlike a microscope image of a material where you can directly see
features like crystallinity or defects, XANES spectra encode information
that requires domain expertise to interpret," explained Lu.
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Standard interpretation of signals in a XANES spectrum relies on
characteristic features known as "fingerprints," which are constructed
from measurements on reference materials. However, this fingerprint
approach fails when the sample is not a simple crystal and pertinent
reference materials cannot be easily identified.

Large-scale theory-based simulations from atomic structure models can
provide very useful insights for the interpretation of experimental
XANES spectra; however, these simulations are often computationally
expensive and time consuming, and their level of accuracy heavily
depends on the chosen theoretical approximations and the system under
study. As a result, robust spectral interpretation is currently the
bottleneck of XAS studies. Furthermore, real-time interpretation of
XAS spectra has emerged as a new challenge for studies of the dynamic
evolution of materials under operating conditions and autonomous
experimentation. The need for robust, efficient spectral interpretation is
becoming increasingly widespread at synchrotron light sources.

"Real-time, accurate interpretation of X-ray scattering and spectroscopy
measurements such as X-ray absorption, fluorescence, and diffraction is
an important capability for users conducting research at NSLS-II and
other synchrotron light facilities," said Mehmet Topsakal, a scientific
associate in the Materials for Energy Applications Group of
Brookhaven's Nuclear Science and Technology Department who is
developing advanced data analysis and machine learning techniques for
X-ray spectroscopy. "Every year, thousands of scientists from all over
the world come to NSLS-II to probe the properties of various materials.
A state-of-the-art spectral analysis pipeline would allow users to obtain
useful feedback on their samples while experiments are ongoing and
make adjustments on the fly to guide experiments. The question is, how
can we do real-time spectral interpretation to uncover structure-spectrum
correlations?"
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Extracting information with machine learning

Leveraging big data and machine learning, Lu and Topsakal set out to
answer this question with computational scientist Shinjae Yoo of
Brookhaven Lab's Computational Science Initiative (CSI) and Columbia
University Ph.D. candidate and DOE Computational Science Graduate
Fellow Matthew Carbone.

"The DOE Computational Science Graduate Fellowship has afforded me
a unique opportunity to extend beyond my chemical physics Ph.D.
research at Columbia to explore the power of machine learning
algorithms, working alongside Brookhaven scientists," said Carbone.
"Machine learning leverages massive datasets to build highly perceptive
models that, once trained, can make on-the-fly predictions on new data.
Such models could be used to bypass expensive quantum chemistry
calculations and support in operando material characterization."

Members of this team and collaborators have been working on spectrum-
to-structure and structure-to-spectrum mappings for several years. In
2017, they developed machine learning models to predict the average
coordination numbers of metal nanoparticles from XANES spectra. Last
year, they created a XANES database to resolve the local structure of an
amorphous titanium-oxide coating for photocatalytic applications. They
also built a machine learning model capable of predicting the local
symmetry of absorber atoms from simulated XANES spectra of
transition-metal oxides.

"When performing spectral interpretation based on domain expertise, we
tend to focus on specific features engineered from our intuition," said
Lu. "Machine learning can extract the information we need in a
statistically salient way that eliminates human bias."
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A schematic illustration of the team's spectrum-based local chemical
environment classification framework. They trained machine learning models
(middle) with computational x-ray absorption spectra database (left) to predict
the local geometry around positively charged transition metal ions (right). Credit:
Brookhaven National Laboratory

Predicting X-ray absorption spectra

Building on their past successes, the team took on a more challenging
problem: train a machine learning model to quickly predict spectra based
on known molecular structures. Such a model would bypass the need for
computationally expensive simulations, which are not feasible during
operando experiments, when scientists are studying materials under
operating conditions. Despite growing machine learning efforts to
predict the chemical properties of materials, direct predictions of the
spectral functions of real materials had not yet been achieved.

"One technical difficulty is building an optimal representation of
molecular structures that can code the inherent symmetry of the
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molecules as input features for the machine learning model," said Yoo.

Adopting a recent idea proposed by scientists at Google, Topsakal and
Carbone built a machine learning model based on a graph representation
of molecules as the input, where atoms are represented as nodes and
chemical bonds as edges.

"Computers can't see molecules as we do," said Topsakal. "A graph is a
natural way to encode the structure and connectivity of a
molecule—capturing which atoms are connected and the type and length
of the chemical bonds connecting them. Moreover, this representation is
invariant to transformations such as translations and rotations. This
concept is analogous to that in image recognition, where an object such
as a cat or dog in a background can still be classified correctly after the
image is transformed."

To train the model for a proof-of-principle demonstration, the team used
a well-established database (called QM9) containing computed structural
and chemical information on 134,000 small molecules with up to nine
heavy atoms per atom type (carbon, nitrogen, oxygen, and fluorine).
From this database, they selected two training subsets—one subset with
molecules containing at least one oxygen atom, and another subset with
molecules containing at least one nitrogen atom—and calculated their
corresponding XANES spectra. Then, they used their trained models to
predict the XANES spectra for oxygen and nitrogen absorption edges
corresponding to excitations of electrons in the innermost shell of the
respective atoms.

The machine learning model reproduced nearly all the significant
absorption peaks and predicted the peak positions (energies at which
peaks appear) and heights (absorption intensities) with very high
accuracy. The model also automatically picked up on the domain
knowledge that X-ray absorption spectroscopy is sensitive to functional
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groups, or groups of atoms with similar chemical properties and
reactivity. Depending on which functional group the absorber atom
belongs to, different features appear in the spectra.

"We're the first to demonstrate that a machine learning model can be
used to accurately predict full spectral functions of real physical systems
directly from their structures," said Topsakal. "Although we focused on
X-ray absorption spectroscopy in our study, this method could be
generalized to predict spectral information for other popular techniques,
including infrared and gamma-ray spectroscopy."

"Once we train the machine learning model, we do not need to run time-
consuming physical simulations, which take minutes, hours, or even
days," said Yoo. "We enabled not only real-time spectra prediction but
also the simultaneous generation of hundreds and thousands of spectra
inferences by using multiple graphics processing units, or GPUs. Such
technology is key to enabling automated beamline controls and
accelerating scientific discovery. Combined with methods to sample
material structures, such models can be used to quickly screen relevant
structures to drive material design and discovery."

Next, the team would like to combine concepts from their model that
predicts local symmetry from XANES spectra and this new model that
predicts XANES spectra from molecular structures. Ultimately, their
goal is to extract more comprehensive information about the local
chemical environment or even the structure of entire molecules from
experimental measurements.

"Machine learning tools, such as those for image and speech recognition
and drug discovery, are under rapid development," said Lu. "The key is
figuring out how to adapt these tools in an innovative way to tackle
materials science problems."
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"Our goal in developing artificial intelligence and machine learning
technologies is to solve unique scientific challenges by both adopting the
latest technology breakthroughs in these areas and coming up with novel
approaches that contribute back to the respective research communities,"
added Yoo.
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