
 

Quantum autoencoders to denoise quantum
measurements
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Many research groups worldwide are currently trying to develop
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instruments to collect high-precision measurements, such as atomic
clocks or gravimeters. Some of these researchers have tried to achieve
this using entangled quantum states, which have a higher sensitivity to
quantities than classical or non-entangled states.

Due to this high sensitivity, however, quantum entangled states are also
more susceptible to picking up noise (i.e., unrelated signals) while
collecting measurements. This can hinder the development of accurate
and reliable quantum-enhanced metrological devices.

To overcome this limitation, two researchers at Leibniz Universität
Hannover in Germany have recently developed quantum machine-
learning algorithms that can be used to denoise quantum data. These
algorithms, presented in a paper published in Physical Review Letters,
could help to produce more reliable data using quantum clocks or other
measurement tools based on entangled quantum states.

Dmytro Bondarenko, one of the researchers involved in the study, had
already been working on a new algorithm based on quantum machine
learning under the supervision of Professor Tobias Osborne at Leibniz
Universität, Hannover. In this new study, Bondarenko and his colleague
Polina Feldmann set out to investigate the feasibility of using this
algorithm to denoise data collected by quantum-enhanced instruments.

"Quantum machine learning is a very promising topic, as it can combine
the versatility of machine learning with the power of quantum
algorithms," Bondarenko and Feldmann told Phys.org via email.
"Machine learning is a ubiquitous method for data analysis."

Just like traditional machine-learning algorithms, quantum machine-
learning algorithms depend on a series of variational parameters that
need to be optimized before an algorithm can be used to analyze data. To
learn the correct parameters, the algorithm needs first to be trained on
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data related to the task it is designed to complete (e.g., pattern
recognition, image classification, etc.).

"When we say quantum machine learning, we mean that the input and
the output of the algorithm are quantum states, for example, of some
number of qubits (quantum bits), which can be realized, for instance,
using superconductors," Bondarenko and Feldmann said. "The algorithm
that maps the input state to the output state is meant to be implemented
on a quantum computer. The variational parameters, which have to be
optimized, are classical parameters of the transformations that are
performed on the quantum computer."

The two researchers wanted to test whether the quantum machine
leaning algorithm previously developed by Bondarenko, Osborne and
their other colleagues could be used to clean up data collected using
quantum-enhanced metrology tools. This ultimately led to the
development of the quantum autoencoders introduced in their recent
paper.

"Assume that you have a quantum experiment that gives you a number
of noisy quantum states," Bondarenko and Feldmann explained.
"Assume furthermore that you have a quantum computer which can
process these states. Our autoencoder is an algorithm which tells the
quantum computer how to transform the noisy quantum states from the
experiment to denoise them."

As an initial step in their research, Bondarenko and Feldmann optimized
their algorithms, training them to effectively denoise quantum data. As
denoised reference states are hard to obtain or unavailable
experimentally, the researchers used a trick that is often used when
optimizing classical autoencoders, which are a type of unsupervised
machine-learning algorithms.
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"The trick is that the algorithm is written in such a way that it has to
reduce the information on the way from the input to its output state,"
Bondarenko and Feldmann said. "Now, the figure of merit is defined as
the similarity of the state processed by the autoencoder and another
noisy state from your experiment. To make these states as similar as
possible, the autoencoder has to keep the information which is equal for
both states (their common noiseless origin), while discarding the noise,
which, in every state coming from your experiment, is different."

  
 

  

Figure outlining the structure of a recurrent QNN. Credit: Bondarenko &
Feldmann.

The researchers have carried out numerous simulations in which they
produced noisy entangled quantum states. First, they used these
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'experimental' outputs to optimize the variational parameters of the
autoencoder. Once this training phase was complete, they were able to
evaluate their autoencoders' performance in denoising quantum
measurements.

"The beauty of our approach is its generality," Bondarenko and
Feldmann said. "You do not need to know beforehand what the output
from your experiment looks like, nor do you have to characterize your
noise sources. The denoising works even if your experimental output is
not unique but depends on some experimental control parameter, which
is crucial for metrological applications."

The goal of the numerical experiments was to denoise a number of
highly entangled quantum states that are subject to spin-flip errors and
random unitary noise. Their algorithms achieved remarkable results and
could also be implemented on current quantum devices.

The algorithms require a quantum computer that can process the specific
experimental output (i.e., quantum data). For instance, if a researcher is
trying to use the autoencoders to denoise data based on trapped ions, but
her quantum computer uses superconducting qubits, she will also need to
use a technique that can map states from one physical platform to the
other.

"Effectively training our autoencoders requires several trials, a
considerable amount of experimental data, and the ability to measure the
similarity between quantum states," Bondarenko and Feldmann said.
"Nonetheless, our algorithm isn't too wasteful regarding these resources
and our examples are small enough to easily fit, at least in terms of the
number of qubits, into many existing quantum computers."

While quantum machine learning techniques and quantum computers
have been found to perform well in a variety of tasks, researchers are
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still trying to identify the practical applications for which they could be
of most use. The recent study carried out by Bondarenko and Feldmann
offers a clear example of how quantum machine learning methods could
ultimately be used in real-world scenarios.

"It was not at all obvious that our approach would work; and it does more
than just work, at least in our small examples, it works extremely well,"
Bondarenko and Feldmann said.

In the future, the quantum autoencoders developed by these two
researchers could be used to improve the reliability of measurements
collected using quantum-enhanced tools, particularly those using many-
body entangled states. In addition, they could serve as interfaces between
different quantum architectures.

"Different quantum devices have different merits," Bondarenko and
Feldmann said. "For example, it might be easier to use cold atoms to
measure gravity, photons are great for communication and
superconducting qubits are more useful for the quantum information
processing. To convert information exchanged between these different
platforms we need interfaces, which, by themselves, introduce errors.
Our autoencoders can help to denoise this exchanged data."

Bondarenko and Feldmann are now trying to develop a different type of
quantum algorithm: a recurrent quantum neural network. This new
algorithm's recurrent architecture should allow it to store information it
processed in the past and have a 'memory," which would allow the
researchers to correct for drifts.

"This can make the quantum experiments simpler because drifts will be
filtered away by post processing," Bondarenko and Feldmann said.
"Another application of recurrent neural networks is the denoising in the
case of slowly changing noise. For example, if one sends entangled
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photons via air, noise can differ between a snowy cloudy day and a hot
day. However, the weather cannot change instantaneously, so an 
algorithm with memory can outperform one without."

  More information: Dmytro Bondarenko et al. Quantum Autoencoders
to Denoise Quantum Data, Physical Review Letters (2020). DOI:
10.1103/PhysRevLett.124.130502 journals.aps.org/prl/abstract/ …
ysRevLett.124.130502 

Kerstin Beer et al. Training deep quantum neural networks, Nature
Communications (2020). DOI: 10.1038/s41467-020-14454-2 
www.nature.com/articles/s41467-020-14454-2

© 2020 Science X Network

Citation: Quantum autoencoders to denoise quantum measurements (2020, April 29) retrieved 11
May 2024 from https://phys.org/news/2020-04-quantum-autoencoders-denoise.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

7/7

https://phys.org/tags/algorithm/
http://dx.doi.org/10.1103/PhysRevLett.124.130502
http://dx.doi.org/10.1103/PhysRevLett.124.130502
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.130502
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.130502
http://dx.doi.org/10.1038/s41467-020-14454-2
https://www.nature.com/articles/s41467-020-14454-2
https://phys.org/news/2020-04-quantum-autoencoders-denoise.html
http://www.tcpdf.org

