

Speak math, not code

March 2 2020

Eminent computer scientist Leslie Lamport, winner of 2013 Turing Award,
speaking at the dialogue held in conjunction with the SMU-Global Young
Scientists Summit 2020. Credit: Rebecca Tan

Have you ever followed a recipe to bake some bread? If you have,
congratulations; you have executed an algorithm. The algorithms that
follow us around the internet to suggest items we might like, and those

1/5

that control what shows up in our Facebook feeds may seem mysterious
and uncanny at times. Yet, an algorithm is simply a set of instructions to
be completed in a specified sequence, whether by human bakers or
computer programs.

The difference, however, lies in how the algorithm is expressed. Recipes
are written in English or other spoken languages while computer
programs are written in programming languages or code. According to
Leslie Lamport, winner of the 2013 Turing Award, thinking
mathematically can be a useful step to specifying the algorithm for
computer programmes, as it can help programmers clarify their thinking
and make programs more efficient.

"Most programmers just start writing code; they don't even know what
the algorithm is. It's like starting to build without a blueprint," said Dr.
Lamport, speaking at an exclusive dialogue at the Singapore
Management University (SMU) on 14 January 2020, held in conjunction
with the SMU-Global Young Scientists Summit 2020.

"And the result? The program is hard to debug and inefficient because
you would be trying to optimise at the code level rather than at the
algorithm level. We should do what almost every other field of science
and engineering does: initially describe the problem with math instead."

Why math is better than code

Using Euclid's algorithm as an example, Dr. Lamport walked the
audience through how an algorithm can be expressed precisely yet
simply with mathematics. Described by ancient Greek mathematician
Euclid in 300 BC, Euclid's algorithm is a method for identifying the
greatest common divisor (GCD) of two numbers, that is, the largest
number that can divide the two numbers without leaving a remainder.
For example, the GCD of the numbers 15 and 12 is 3.

2/5

https://phys.org/tags/computer+programs/
https://phys.org/tags/computer+programs/

The method is simple: subtract the smaller number from the larger
number, then repeat this till both numbers are the same; the resulting
number is the GCD. The entire procedure can be described in a single
mathematical formula, said Dr. Lamport, who is recognised for
developing the widely used LaTex file format, in addition to his
pioneering work on distributed computing systems.

In contrast, writing Euclid's algorithm in code is more time consuming
and cumbersome, and therefore harder to debug if it is not working
correctly. "Euclid's program would have to contain a lot of lower level
details, like what you should do if either number is less than or equal to
zero," Dr. Lamport said. "You would have to decide that if you are
writing a computer program but it's not the algorithm's problem."

How much more efficient would using math instead of code be? When
engineers used TLA+, a high level formal specification language based
on mathematics developed by Dr. Lamport to model, document and
verify concurrent computing systems, they were able to dramatically
reduce the size of an operating system originally used to control some
experiments on the Rosetta spacecraft. "One of the results of specifying
the software logic with TLA+ was that the code size was able to be
reduced to about ten times less than the original," Dr. Lamport said.
"You don't reduce the code size by ten times by better coding; you do it
by cleaner architecture, which is just another word for a better algorithm
."

On top of being more efficient, taking a mathematical approach has the
additional benefit of making de-bugging easier. Amazon Web Services
and Microsoft Azure engineers use TLA+ for their cloud services, Dr.
Lamport said, and through it have found bugs in their system designs
that could not be found via any other technique.

Get comfortable with math

3/5

https://phys.org/tags/number/
https://phys.org/tags/code/
https://phys.org/tags/algorithm/

Although math is both powerful and elegant when it comes to describing
algorithms, many people—including computer programmers and
engineers—are intimidated by it and shy away from using it. "Some
students have asked us when can they stop doing and reviewing the math
and start the software programming," said Professor Steven Miller, Vice
Provost (Research) at SMU and formerly the Founding Dean of the
School of Information Systems.

Dr. Lamport believes that getting used to 'speaking' in mathematics is a
matter of exposure. "Why is 'two plus two equals four' considered simple
but a logical operation like 'an element of' is hard to understand for most
people? Logical operations such as "element of" simply means that
something is part of a bunch of other things. That concept doesn't
require you to learn any complicated thing like counting, as counting is
actually quite complicated," he said.

"Why should 'element of' seem frightening when 'plus' seems so easy?
It's just a matter of not being familiar with it, and this is not all your own
fault—mathematicians are terrible at teaching it."

For Dr. Lamport, becoming fluent in mathematics is the first step, but
for mathematical thinking to truly impact the way algorithms are written,
it has to change the way we think. "I want to emphasise that mathematics
doesn't solve the problem for you; you have to solve the problem," he
said. "Thinking mathematically will help you solve the problem; and
mathematics helps to ensure that the solution was right."

Provided by Singapore Managment University

Citation: Speak math, not code (2020, March 2) retrieved 25 April 2024 from
https://phys.org/news/2020-03-math-code.html

4/5

https://phys.org/news/2020-03-math-code.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

http://www.tcpdf.org

