
 

Machine learning puts a new spin on spin
models
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The low and high temperature phases are found in the right proportions at
different temperatures relative to the transition point for different sizes of
lattice. (inset) The size of the lattice may be accounted for to give a single master
curve. Credit: Tokyo Metropolitan University
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Researchers from Tokyo Metropolitan University have used machine
learning to analyze spin models, which are used in physics to study phase
transitions. Previous work showed that an image/handwriting
classification model could be applied to distinguish states in the simplest
models. The team showed the approach is applicable to more complex
models and found that an AI trained on one model and applied to
another could reveal key similarities between distinct phases in different
systems.

Machine learning and artificial intelligence (AI) are revolutionizing how
we live, work, play, and drive. Self-driving cars, the algorithm that beat a
Go grandmaster and advances in finance are just the tip of the iceberg of
a wide range of applications now having a significant impact on society.
AI is also making waves in scientific research. A key attraction of these
algorithms is that they can be trained with pre-classified data (e.g.,
images of handwritten letters) and be applied to classify a much wider
range of data.

In the field of condensed matter physics, recent work by Carrasquilla
and Melko (Nature Physics (2017) 13, 431-434) has shown that neural
networks, the same kind of AI used to interpret handwriting, could be
used to distinguish different phases of matter (e.g., gas, liquid and solids)
in simple physical models. They studied the Ising model, the simplest
model for the emergence of magnetism in materials. A lattice of atoms
with a spin (up or down) has an energy that depends on the relative
alignment of adjacent spins. Depending on the conditions, these spins
can line up into a ferromagnetic phase (like iron) or assume random
directions in a paramagnetic phase. Usually, studies of this kind of
system involve analyzing some averaged quantity (e.g., the sum of all the
spins). The fact that an entire microscopic configuration can be used to
classify a phase presented a genuine paradigm shift.
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Simulated low temperature (left) and high temperature (right) phase of a 2D
Ising model, where blue points are spins pointing up, and the red points are spins
pointing down. Notice that the spins in the low temperature phase are mostly in
the same direction. This is called a ferromagnetic phase. On the other hand, at
high temperature, the ratio of up to down spins is closer to 50:50. This is called a
paramagnetic phase. Credit: Tokyo Metropolitan University

Now, a team led by Professors Hiroyuki Mori and Yutaka Okabe of
Tokyo Metropolitan University are collaborating with the Bioinformatics
Institute in Singapore to take this approach to the next level. In its
existing form, the method of Carrasquilla and Melko cannot be applied
to more complex models than the Ising model. For instance, take the q-
state Potts model, where atoms can take one of q states instead of just
"up" or "down." Though it also has a phase transition, telling the phases
apart is not trivial. In fact, in the case of a five-state model, there are 120
states that are physically equivalent. To help an AI tell the phases apart,
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the team gave it more microscopic information, specifically, how the
state of a particular atom relates to the state of another atom some
distance away, or how the spins correlate over separation. Having trained
the AI with many of these correlation configurations for three- and five-
state Potts models, they found that it could correctly classify phases and
identify the temperature where the transition took place. The researchers
could also correctly account for the number of points in their lattice, the
finite-size effect.

  
 

  

The input (correlation configurations) is fed into a system of interconnected

4/6



 

nodes known as a neural network, giving a series of outputs telling us which
phase the configuration belongs to. During training, the algorithm is told whether
the outputs are right or wrong, and the network is adjusted over and over again to
get better agreement i.e. it learns. Credit: Tokyo Meropolitan University

Having demonstrated that their method works, they tried the same
approach on a q-state clock model, where spins adopt one of q
orientations on a circle. When q is greater than or equal to five, there are
three phases that the system can take: an ordered low-temperature phase,
a high-temperature phase, and a phase in between known as the
Berezinskii-Kosterlitz-Thouless (BKT) phase, the investigation of which
won John M. Kosterlitz, David J. Thouless and Duncan Haldane the
2016 Nobel Prize for Physics. They successfully trained an AI to tell the
three phases apart with a six-state clock model. When they applied it to
configurations from a four-state clock model, in which only two phases
are expected, they discovered that the algorithm could classify the
system as being in a BKT phase near the phase transition. This
demonstrates that there is a deep connection between the BKT phase and
the critical phase arising at the smooth 'second-order' phase transition
point in the four-state system.

The method presented by the team is generally applicable to a wide
range of scientific problems. A key part of physics is universality,
identifying traits in seemingly unrelated systems or phenomena that give
rise to unified behavior. Machine learning is uniquely suited to tease
these features out of the most complex models and systems, letting
scientists take a peek at the deep connections that govern nature and our
universe.

  More information: Kenta Shiina et al, Machine-Learning Studies on
Spin Models, Scientific Reports (2020). DOI:
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