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Machine-learning technology to track odd
events among LHC data

March 9 2020

A simulated CMS collision where a long-lived particle is produced together with
other 'regular' jets. The long-lived particle travels for a short distance before it
decays, creating particles that appear displaced from the point where the LHC
beams collided. Credit: CERN

Nowadays, artificial neural networks have an impact on many areas of
our day-to-day lives. They are used for a wide variety of complex tasks,
such as driving cars, performing speech recognition (for example, Siri,
Cortana, Alexa), suggesting shopping items and trends, or improving
visual effects in movies (e.g., animated characters such as Thanos from
the movie Infinity War by Marvel).
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Traditionally, algorithms are handcrafted to solve complex tasks. This
requires experts to spend a significant amount of time to identify the
optimal strategies for various situations. Artificial neural
networks—inspired by interconnected neurons in the brain—can
automatically learn from data a close-to-optimal solution for the given
objective. Often, the automated learning or "training" required to obtain
these solutions is "supervised" through the use of supplementary
information provided by an expert. Other approaches are "unsupervised"
and can identify patterns in the data. The mathematical theory behind
artificial neural networks has evolved over several decades, yet only
recently have we developed our understanding of how to train them
efficiently. The required calculations are very similar to those performed
by standard video graphics cards (that contain a graphics processing unit
or GPU) when rendering three-dimensional scenes in video games. The
ability to train artificial neural networks in a relatively short amount of
time is made possible by exploiting the massively parallel computing
capabilities of general-purpose GPUs. The flourishing video game
industry has driven the development of GPUs. This advancement, along
with the significant progress in machine learning theory and the ever-
increasing volume of digitised information, has helped to usher in the
age of artificial intelligence and "deep learning".

In the field of high energy physics, the use of machine learning
techniques, such as simple neural networks or decision trees, have been
in use for several decades. More recently, the theory and experimental
communities are increasingly turning to the state-of-the-art techniques,
such as "deep" neural network architectures, to help us understand the
fundamental nature of our Universe. The standard model of particle
physics is a coherent collection of physical laws—expressed in the
language of mathematics—that govern the fundamental particles and
forces, which in turn explain the nature of our visible Universe. At the
CERN LHC, many scientific results focus on the search for new "exotic"
particles that are not predicted by the standard model. These
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hypothetical particles are the manifestations of new theories that aim to
answer questions such as: why is the Universe predominantly composed
of matter rather than antimatter, or what is the nature of dark matter?
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Figure 1: Schematic of the network architecture. The upper (orange and blue)
sections of the diagram illustrate the components of the network that are used to
distinguish jets produced in the decays of long-lived particles from jets produced
by other means, trained with simulated data. The lower (green) part of the
diagram shows the components that are trained using real collision data. Credit:

CERN
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Figure 2: An illustration of the performance of the network. The coloured curves
represent the performance of different theoretical supersymmetric models. The
horizontal axis gives the efficiency for correctly identifying a long-lived particle
decay (i.e. the true-positive rate). The vertical axis shows the corresponding false-
positive rate, which is the fraction of standard jets mistakenly identified as
originating from the decay of a long-lived particle. As an example, we use a

point of the red curve where the fraction of genuine long-lived particles that are
correctly identified is 0.5 (i.e. 50%). This method misidentifies only one regular
jet in every thousand mistakenly as originating from a long-lived particle decay.
Credit: CERN
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Recently, searches for new particles that exist for more than a fleeting
moment in time before decaying to ordinary particles have received
particular attention. These "long-lived" particles can travel measurable
distances (fractions of millimetres or more) from the proton-proton
collision point in each LHC experiment before decaying. Often,
theoretical predictions assume that the long-lived particle is
undetectable. In that case, only the particles from the decay of the
undiscovered particle will leave traces in the detector systems, leading to
the rather atypical experimental signature of particles apparently
appearing from out of nowhere and displaced from the collision point.

A novel aspect of this study involves the use of data from real collision
events, as well as simulated events, to train the network. This approach is
used because the simulation—although very sophisticated—does not
exhaustively reproduce all the details of the real collision data. In
particular, the jets arising from long-lived particle decays are challenging
to simulate accurately. The effect of applying this technique, dubbed
"domain adaptation,"” is that the information provided by the neural
network agrees to a high level of accuracy for both real and simulated
collision data. This behaviour is a crucial trait for algorithms that will be
used by searches for rare new-physics processes, as the algorithms must
demonstrate robustness and reliability when applied to data.
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Figure 3: Histograms of the output values from the neural network for real
(black circular markers) and simulated (coloured filled histograms) proton-
proton collision data without (left panel) and with (right panel) the application of
domain adaptation. The lower panels display the ratios between the numbers of
real data and simulated events obtained from each histogram bin. The ratios are
significantly closer to unity for the right panel, which indicates an improved
understanding of the neural network performance for real collision data, which is
crucial to reduce false positive (and false negative!) scientific results when
searching for exotic new particles. Credit: CERN

The CMS Collaboration will deploy this new tool as part of its ongoing
search for exotic, long-lived particles. This study is part of a larger,
coordinated effort across all the LHC experiments to use modern
machine techniques to improve how the large data samples are recorded
by the detectors and the subsequent data analysis. For example, the use
of domain adaptation may make it easier to deploy robust machine-
learned models as part of future results. The experience gained from
these types of study will increase the physics potential during Run 3,
from 2021, and beyond with the High Luminosity LHC.

More information: A deep neural network to search for new long-
lived particles decaying to jets: cms-results.web.cern.ch/cms-re ...

X0-19-011/index.html
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