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Conceptual comparison of a standard RNN and a wave-based physcal system.
(A) Diagram of an RNN cell operating on a discrete input sequence and
producing a discrete output sequence. (B) Internal components of the RNN cell,
consisting of trainable dense matrices W(h), W(x), and W(y). Activation
functions for the hidden state and output are represented by σ(h) and σ(y),
respectively. (C) Diagram of the directed graph of the RNN cell. (D) Diagram of
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a recurrent representation of a continuous physical system operating on a
continuous input sequence and producing a continuous output sequence. (E)
Internal components of the recurrence relation for the wave equation when
discretized using finite differences. (F) Diagram of the directed graph of discrete
time steps of the continuous physical system and illustration of how a wave
disturbance propagates within the domain. Credit: Science Advances, doi:
10.1126/sciadv.aay6946

Analog machine learning hardware offers a promising alternative to
digital counterparts as a more energy efficient and faster platform. Wave
physics based on acoustics and optics is a natural candidate to build
analog processors for time-varying signals. In a new report on Science
AdvancesTyler W. Hughes and a research team in the departments of
Applied Physics and Electrical Engineering at Stanford University,
California, identified mapping between the dynamics of wave physics
and computation in recurrent neural networks.

The map indicated the possibility of training physical wave systems to
learn complex features in temporal data using standard training
techniques used for neural networks. As proof of principle, they
demonstrated an inverse-designed, inhomogeneous medium to perform
English vowel classification based on raw audio signals as their
waveforms scattered and propagated through it. The scientists achieved
performance comparable to a standard digital implementation of a
recurrent neural network. The findings will pave the way for a new class
of analog machine learning platforms for fast and efficient information
processing within its native domain.

The recurrent neural network (RNN) is an important machine learning
model widely used to perform tasks including natural language
processing and time series prediction. The team trained wave-based
physical systems to function as an RNN and passively process signals
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and information in their native domain without analog-to-digital
conversion. The work resulted in a substantial gain in speed and reduced
power consumption. In the present framework, instead of implementing
circuits to deliberately route signals back to the input, the recurrence
relationship occurred naturally in the time dynamics of the physics itself.
The device provided the memory capacity for information processing
based on the waves as they propagated through space.

  
 

  

Schematic of the vowel recognition setup and the training procedure. (A) Raw
audio waveforms of spoken vowel samples from three classes. (B) Layout of the
vowel recognition system. Vowel samples are independently injected at the
source, located at the left of the domain, and propagate through the center
region, indicated in green, where a material distribution is optimized during
training. The dark gray region represents an absorbing boundary layer. (C) For
classification, the time-integrated power at each probe is measured and
normalized to be interpreted as a probability distribution over the vowel classes.
(D) Using automatic differentiation, the gradient of the loss function with
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respect to the density of material in the green region is computed. The material
density is updated iteratively, using gradient-based stochastic optimization
techniques until convergence Credit: Science Advances, doi:
10.1126/sciadv.aay6946

Equivalence between wave dynamics and an RNN

To demonstrate the equivalence between wave dynamics and an RNN,
Hughes et al. introduced the function of an RNN and its connection to
wave dynamics. For example, an RNN can convert a sequence of inputs
into a sequence of outputs by applying the same basic operation to each
input sequence member in a stepwise process. The RNN's hidden state
will then encode the memory of previous steps to update at each step.
The hidden states could retain memory of past information and learn
temporal structure and long-range dependencies in data.

At a given step, as an example, the RNN can function on the current
input vector in the sequence (xt) and the hidden state vector from the
previous step (ht−1), to produce an output vector (yt) and an updated
hidden state (ht). While many variations of RNNs exist, Hughes et al.
implemented a commonly incorporated strategy in the present work. The
research team observed a nonlinear response, which is typically
encountered in a wide variety of wave physics including shallow water
waves, nonlinear optical materials (study of intense laser light with
matter) and acoustically within soft materials and bubbly fluids. When
modeled numerically in discrete time, the wave equation defined an
operation that mapped into that of an RNN.
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Vowel recognition training results. Confusion matrix over the training and testing
datasets for the initial structure (A and B) and final structure (C and D),
indicating the percentage of correctly (diagonal) and incorrectly (off-diagonal)
predicted vowels. Cross-validated training results showing the mean (solid line)
and SD (shaded region) of the (E) cross-entropy loss and (F) prediction accuracy
over 30 training epochs and five folds of the dataset, which consists of a total of
279 total vowel samples of male and female speakers. (G to I) The time-
integrated intensity distribution for a randomly selected input (G) ae vowel, (H)
ei vowel, and (I) iy vowel. Credit: Science Advances, doi:
10.1126/sciadv.aay6946

Training a physical system to classify vowels
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The team then demonstrated how the wave equation dynamics could be
trained to classify vowels by constructing an inhomogeneous material
distribution. For this, they used a dataset of 930 raw audio recordings of
10 vowel classes from 45 different male speakers and 48 different
female speakers. For the learning task, Hugh et al. selected a subset of
279 recordings corresponding to three vowel classes represented by the
vowel sounds "ae," "ei" and "iy," relative to their use in the words "had,"
"hayed" and "heed." The physical layout of the vowel recognition system
contained a two-dimensional domain in the x-y plane and infinitely
extended in the z-direction. They injected the audio waveform of each
vowel via a source at a single grid cell on the left side of the domain for
emitting waveforms to propagate through a central region with a
trainable distribution of the wave speed. They defined three probes on
the right-hand side of the region and assigned each to one of the three
vowel classes. Hugh et al. then measured the time-integrated power at
each probe to determine the system's output.

The simulation evolved for the full duration of the vowel recording and
the team included an absorbing boundary region represented by a dark
gray region to prevent energy build up within the computational domain.
The wave speeds could be modified to correspond to different materials
in practice. In an acoustic setting, for instance, if the material
distribution consisted of air, the sound speed was 331 m/s, while porous
silicone rubber constituted a sound speed of 150 m/s. The choice of
starting structure allowed them to shift the optimizer toward either of the
two materials, to produce a binarized structure containing only one of
the two materials. Hughes et al. trained the system by performing back-
propagation through the model of the wave equation, in an approach
mathematically equivalent to the adjoint method widely used for inverse
design. Using this design information, they updated the material density
via the Adam optimization algorithm, repeating until convergence on a
final structure.
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Frequency content of the vowel classes. The plotted quantity is the mean energy
spectrum for the ae, ei, and iy vowel classes. a.u., arbitrary units. Credit: Science
Advances, doi: 10.1126/sciadv.aay6946

Visualizing the performance

The scientists used a confusion matrix to visualize the performance
across the training and testing data sets for the starting structures,
averaged across five cross-validated training runs. The confusion matrix
defined the percentage of correctly predicted vowels along its diagonal
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entries and the percentage of incorrectly predicted vowels for each class
in its off-diagonal entries. The diagonally dominant trained confusion
matrices indicated the structure could indeed perform vowel recognition.
Hughes et al. noted the cross-entropy loss value and the prediction
accuracy as a function of the training epoch on the testing and training
datasets.

The first epoch resulted in the largest reduction of the loss function and
the largest gain in prediction accuracy, with a mean accuracy of 92.6
percent on the training dataset and a mean accuracy of 86.3 percent on
the testing dataset. The team observed the system to obtain near-perfect
prediction performance on the "ae" vowel alongside the ability to
differentiate the "iy" vowel from the "ei" vowel—but with lesser
accuracy within the unseen samples from the testing datasets. In this
way, the team provided visual confirmation on the optimization
procedure to route most of the signal energy to the correct probe. As a
performance benchmark, they trained a conventional RNN on the same
task to achieve classification accuracy comparable to the wave equation.
However, they required a large number of free parameters for the task.

In this way, Tyler W. Hughes and colleagues presented a wave-based
RNN with a number of favorable qualities to form a promising candidate
to process temporally encoded information. The use of physics to
perform computation may inspire a new platform for analog machine
learning devices in order to perform computation far more naturally and
efficiently than its digital counterparts. The research team determined
the size of the analog RNN's hidden state and its memory capacity using
the size of the propagation medium. They showed the dynamics of the
wave equation to be conceptually equivalent to those of an RNN. The
conceptual connection will pave the way for a new class of analog
hardware platforms, wherein the evolving time dynamics will play a
major role in both the physics and the dataset.
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