
 

A new mathematical model predicts a knot's
stability

January 3 2020, by Jennifer Chu

  
 

  

An example of overhand knots. Credit: Massachusetts Institute of Technology

In sailing, rock climbing, construction, and any activity requiring the
securing of ropes, certain knots are known to be stronger than others.
Any seasoned sailor knows, for instance, that one type of knot will
secure a sheet to a headsail, while another is better for hitching a boat to
a piling.

But what exactly makes one knot more stable than another has not been
well-understood, until now.
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MIT mathematicians and engineers have developed a mathematical
model that predicts how stable a knot is, based on several key properties,
including the number of crossings involved and the direction in which
the rope segments twist as the knot is pulled tight.

"These subtle differences between knots critically determine whether a
knot is strong or not," says Jörn Dunkel, associate professor of
mathematics at MIT. "With this model, you should be able to look at two
knots that are almost identical, and be able to say which is the better
one."

"Empirical knowledge refined over centuries has crystallized out what
the best knots are," adds Mathias Kolle, the Rockwell International
Career Development Associate Professor at MIT. "And now the model
shows why."

Dunkel, Kolle, and Ph.D. students Vishal Patil and Joseph Sandt have
published their results today in the journal Science.

Pressure's color

In 2018, Kolle's group engineered stretchable fibers that change color in
response to strain or pressure. The researchers showed that when they
pulled on a fiber, its hue changed from one color of the rainbow to
another, particularly in areas that experienced the greatest stress or
pressure.

Kolle, an associate professor of mechanical engineering, was invited by
MIT's math department to give a talk on the fibers. Dunkel was in the
audience and began to cook up an idea: What if the pressure-sensing
fibers could be used to study the stability in knots?

Mathematicians have long been intrigued by knots, so much so that
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physical knots have inspired an entire subfield of topology known as
knot theory—the study of theoretical knots whose ends, unlike actual
knots, are joined to form a continuous pattern. In knot theory,
mathematicians seek to describe a knot in mathematical terms, along
with all the ways that it can be twisted or deformed while still retaining
its topology, or general geometry.

"In mathematical knot theory, you throw everything out that's related to
mechanics," Dunkel says. "You don't care about whether you have a stiff
versus soft fiber—it's the same knot from a mathematician's point of
view. But we wanted to see if we could add something to the
mathematical modeling of knots that accounts for their mechanical
properties, to be able to say why one knot is stronger than another."

  
 

  

An example of a reef knot. Credit: Massachusetts Institute of Technology

Spaghetti physics
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Dunkel and Kolle teamed up to identify what determines a knot's
stability. The team first used Kolle's fibers to tie a variety of knots,
including the trefoil and figure-eight knots—configurations that were
familiar to Kolle, who is an avid sailor, and to rock-climbing members
of Dunkel's group. They photographed each fiber, noting where and
when the fiber changed color, along with the force that was applied to
the fiber as it was pulled tight.

The researchers used the data from these experiments to calibrate a
model that Dunkel's group previously implemented to describe another
type of fiber: spaghetti. In that model, Patil and Dunkel described the
behavior of spaghetti and other flexible, rope-like structures by treating
each strand as a chain of small, discrete, spring-connected beads. The
way each spring bends and deforms can be calculated based on the force
that is applied to each individual spring.

Kolle's student Joseph Sandt had previously drawn up a color map based
on experiments with the fibers, which correlates a fiber's color with a
given pressure applied to that fiber. Patil and Dunkel incorporated this
color map into their spaghetti model, then used the model to simulate the
same knots that the researchers had tied physically using the fibers.
When they compared the knots in the experiments with those in the
simulations, they found the pattern of colors in both were virtually the
same—a sign that the model was accurately simulating the distribution
of stress in knots.

With confidence in their model, Patil then simulated more complicated
knots, taking note of which knots experienced more pressure and were
therefore stronger than other knots. Once they categorized knots based
on their relative strength, Patil and Dunkel looked for an explanation for
why certain knots were stronger than others. To do this, they drew up
simple diagrams for the well-known granny, reef, thief, and grief knots,
along with more complicated ones, such as the carrick, zeppelin, and
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Alpine butterfly.

Each knot diagram depicts the pattern of the two strands in a knot before
it is pulled tight. The researchers included the direction of each segment
of a strand as it is pulled, along with where strands cross. They also
noted the direction each segment of a strand rotates as a knot is
tightened.

In comparing the diagrams of knots of various strengths, the researchers
were able to identify general "counting rules," or characteristics that
determine a knot's stability. Basically, a knot is stronger if it has more
strand crossings, as well as more "twist fluctuations"—changes in the
direction of rotation from one strand segment to another.

For instance, if a fiber segment is rotated to the left at one crossing and
rotated to the right at a neighboring crossing as a knot is pulled tight, this
creates a twist fluctuation and thus opposing friction, which adds
stability to a knot. If, however, the segment is rotated in the same
direction at two neighboring crossing, there is no twist fluctuation, and
the strand is more likely to rotate and slip, producing a weaker knot.

They also found that a knot can be made stronger if it has more
"circulations," which they define as a region in a knot where two parallel
strands loop against each other in opposite directions, like a circular
flow.

By taking into account these simple counting rules, the team was able to
explain why a reef knot, for instance, is stronger than a granny knot.
While the two are almost identical, the reef knot has a higher number of
twist fluctuations, making it a more stable configuration. Likewise, the
zeppelin knot, because of its slightly higher circulations and twist
fluctuations, is stronger, though possibly harder to untie, than the Alpine
butterfly—a knot that is commonly used in climbing.
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"If you take a family of similar knots from which empirical knowledge
singles one out as "the best," now we can say why it might deserve this
distinction," says Kolle, who envisions the new model can be used to
configure knots of various strengths to suit particular applications. "We
can play knots against each other for uses in suturing, sailing, climbing,
and construction. It's wonderful."

  More information: Vishal P. Patil et al. Topological mechanics of
knots and tangles, Science (2020). DOI: 10.1126/science.aaz0135

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.
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