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Inverse design of porous materials using
artificial neural networks

January 20 2020, by Thamarasee Jeewandara
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Overall schematics of the ZeoGAN. Energy (green) in this case refers to
methane potential energy, and material grids indicate silicon (red) and oxygen
(yellow) atoms. Credit: Science Advances, doi: 10.1126/sciadv.aax9324

The ability to generate optimized nanomaterials with artificial neural
networks can significantly revolutionize the future of materials design in
materials science. While scientists had progressively created small and
simple molecules, complex crystalline porous materials remain to be
generated using neural networks. In a recent report on Science Advances,
Baekjun Kim and a team of researchers in the Department of Chemical
and Biomolecular Engineering at the Korea Advanced Institute of
Science and Technology, Republic of Korea, implemented a generative
adversarial network.

They produced 121 crystalline porous materials using a training set of
31,713 known zeolites. The new neural network took input in the form
of energy and materials dimensions to reliably produce zeolites with a
user-desired range of 4 kJ/mol methane heat of adsorption. They
designated the energy dimension in the work to be the methane potential
energy. The fine-tuning of user-desired capability can potentially
accelerate materials development, while demonstrating a successful case
of inverse design of porous materials.

Materials scientists have conducted significant research to discover new
materials using artificial intelligence in the past few years. They made
considerable progress using a variety of artificial neural networks
(ANN5s) to generate undiscovered molecules and materials. However,
ANNSs remain to be successfully used to create new crystalline materials,
since machine learning had thus far only predicted materials properties,
compositions, bandgap energy, formation energy and gas adsorption

2/11


https://phys.org/search/?search=materials+science
https://phys.org/search/?search=neural+networks&s=0
https://www.sciencedirect.com/science/article/pii/B9780128161760000284
https://www.sciencedirect.com/science/article/pii/B9780128161760000284
https://www.sciencedirect.com/topics/engineering/potential-energy
https://www.sciencedirect.com/topics/engineering/potential-energy
https://www.sciencedirect.com/topics/engineering/inverse-design
https://www.sciencedirect.com/topics/neuroscience/artificial-neural-network
https://arxiv.org/abs/1805.11973
https://www.sciencedirect.com/book/9780080510545/machine-learning
https://www.sciencedirect.com/topics/engineering/band-gap-energy
https://pubs.acs.org/doi/abs/10.1021/jz501331m

PHYS 19X

uptakes. Crystalline porous materials contain dense arrangements of
microscopic pores for higher surface area and pore volume. They are an
important class of materials for a variety of diverse energy- and
environment- related applications. Compared to other crystalline
materials, porous materials such as zeolites, metal organic frameworks
(MOFs) and covalent organic frameworks (COFs) are comparatively
more challenging to generate using ANNs due to greater complexity.
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repairing algorithm. The SiO bond lengths are always less than 2.5 A. (A) In the
case of where the silicon atom is unsaturated (bond count is less than their proper
bond count), an oxygen atom can be inserted at the midpoint between another
unsaturated Si. (fig. S3 B, D and G) Removal of atoms are also required when
the atom has inaccurate bond counts. (C) If a silicon atom has overfull bonds,
one of its bonded atom can be removed in the next structure. (E) A silicon atom
can be inserted between the unsaturated oxygen atoms. (F) The duplicated Si-O-
Si connections are rejected. Credit: Science Advances, doi:
10.1126/sciadv.aax9324

In this study, Kim et al. devised an ANN to generate crystalline porous
materials by specifically targeting a case study problem to produce pure
silica zeolite structures, chosen for their structural simplicity. The team
used a wealth of materials available on an open database of hypothetical
zeolites to train the neural network. Zeolites are classically defined as
aluminosilicates with open three-dimensional (3-D) frameworks
containing corner-sharing TO, tetrahedra where T is Aluminium (Al) or
Silicon (S1).

While a few previous research efforts used an evolution algorithm to
target material properties, such conventional methods lead to brute-force
generation of porous materials, necessitating computationally expensive
screening to identify optimal materials for a given application. A
majority of such generated materials have poor properties, affecting
inefficient allocation of computational resources. Kim et al. designed the
new neural network to represent the inputs in both material and energy
dimensions. The new algorithm has a unique advantage to achieve
inverse materials design using ANNS to bias the energy dimension
correlating to the materials properties.

Generative adversarial network for zeolites.
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The team used generative adversarial networks (GAN) to produce
crystalline porous materials due to their enhanced capacity to produce
realistic objects such as human faces. The GAN contained a
discriminator and a generator, where the discrimination could
differentiate between the real and fake data, as the generator acts to
deceive the discriminator by progressively forming realistic (yet fake)
objects. This setup could advance adversarial learning by generating
increasingly realistic objects as a byproduct of improving the learning
process for both the discriminator and generator.
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Architecture of ZeoGAN. (A) The critic network and auxiliary lattice inference
network

Since the goal of this work was to generate materials and energy shapes,
Kim et al. formed a new type of GAN named zeolite GAN (ZeoGAN).
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The team aimed to produce realistic zeolite materials using the generator
in ZeoGAN with their corresponding energy shapes to add several
features to the setup. They added periodic padding within the critic (or
discriminator) to prevent generating non-realistic shapes that could lead
to unrealistic bonds, and facilitated convergence for both materials and
energy shapes by adding feature-matching to the ZeoGAN.

In the present experimental setup, they divided the input to the neural
network into materials and energy grids, with the materials grid further
sub-divided into the silicon and oxygen atom grids based on classical
molecular simulations. The scientists used three grids each and kept the
number of grid points small and constant to reduce the memory cost,
since larger grids can lead to a very slow learning process. They
represented the positions of the silicon (Si) and oxygen (O) atoms using
Gaussian functions, where the peak of the Gaussian corresponded to the
position of the Zeolite atoms.

Generating pure silica zeolites

The scientists used a total of 31,173 methane accessible zeolites to train
the neural network. The learning process of ZeoGAN showed the
evolution of material/energy shapes from their initial Gaussian noise
distributions. They trained the discriminator to estimate the Earth
mover's distance (EMD) between the data distribution and generator
distribution, and trained the generator to minimize the EMD so as to
generate realistic samples. Initially, the material/energy shapes
resembled typical noise distribution but as learning progressed, they
occupied separate regions in the unit cell space to morph into shapes
resembling typical zeolites.
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LEFT: Learning curve of ZeoGAN and histogram of Si:O ratio values. (A) EMD
as a function of ZeoGAN iteration steps. The inset figure shows the evolution of
a specific material (red/yellow) and energy (green) shapes. (B) Normalized
frequency of Si:O ratio values for 1 million ZeoGAN outputs (top).
Representative zeolite structures of the positions extracted from the zeolite
shapes generated by the ZeoGAN for the outputs with different Si:O ratios
(bottom). RIGHT: Evolution of three zeolite shapes that successfully passed
through the clean-up operation to yield Si:O = 0.5 and 100% bond connectivity.
Credit: Science Advances, doi: 10.1126/sciadv.aax9324

In total, they generated 1 million zeolite shapes (both material and
energy) from the ZeoGAN. From these shapes, they assigned the
positions of the oxygen and silicon atoms using a simple rule and
calculated the Si:O ratio for each output. The zeolite shapes evolved as
they successfully passed through a clean-up operation to yield an optimal
Si:0 ratio and 100 percent bond connectivity. From this set, they kept
structures with a small number of symmetrically unique T atoms (where
T is Al or Si). The final relaxed structures resembled their initial zeolite
shapes, indicating that post-processing did not significantly alter the
essence of new zeolite shapes. Kim et al. obtained a total of eight
resulting structures after clean-up, which were not in the original training
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set to indicate the successful creation of new zeolites using ZeoGAN.

Using ZeoGAN for inverse design of zeolites

The zeolites thus far generated from ZeoGAN did not contain any user-
desired properties. To improve the design, the research team selected to
alter the methane heat of adsorption and ZeoGAN loss function to target
generate zeolites with heat of adsorption values between 18 and 22
kJ/mol. The team observed a sharp change in the methane heat of
adsorption distribution within the data for the 1 million newly generated-
user-desired zeolite shapes indicating proper function of the user-desired
criterion. The values did not correlate with the new loss function,
however. The team then implemented a similar clean-up process (as
before), for the 1 million user-desired zeolite shapes, to yield six new
zeolites and one zeolite also previously produced within the non-user
desired set. Of these six zeolites, four maintained methane heat of
adsorption between 18 and 22 kJ/mol as expected, indicating successful
inverse design of the zeolites.
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LEFT: User-desired generation results. (A) Distributions (methane KH, methane
void fraction, and methane heat of adsorption) for 31,713 training set zeolites
(pink), 1 million user-desired zeolite shapes (green), and 6 user-desired zeolites
(yellow markers). (B) Two representative structures generated from the user-
desired scheme that yielded methane heat of adsorption in the user-desired range
of 18 to 22 kJ/mol. RIGHT: Number of zeolites versus the number of unique T
atoms. Some representative zeolites are shown for different numbers of T atoms:
12 (left top), 28 (left bottom), 48 (right top), and 64 (right bottom). Credit:
Science Advances, doi: 10.1126/sciadv.aax9324

These experiments were a first-in-study, since preceding experimental or
computational models had not thus far yielded properties within this user-
desired specific range. Additionally, when Kim et al. removed
restrictions for the number of unique T atoms that were possible for
zeolite candidates generated from ANNS, they observed a significant
increase in the number of newly formed zeolites. In this way, they
obtained 121 feasible zeolite structures in total using the in-house-
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developed ANN, to successfully extend the number of new zeolites
within the pure silica zeolite material space.

This work will potentially pave the way to incorporate ANNs to target
user-desired properties before material design and synthesis. Although
the ANN is restricted to just silicon and oxygen atoms here for
simplicity, the number of input channels can be increased to cover more
complex crystalline materials such as MOFs and COFs. The scope of
this work can be enhanced to affect the future design of diverse classes
of materials.

More information: Baekjun Kim et al. Inverse design of porous

materials using artificial neural networks, Science Advances (2020). DOI:
10.1126/sciadv.aax9324

Benjamin Sanchez-Lengeling et al. Inverse molecular design using
machine learning: Generative models for matter engineering, Science
(2018). DOI: 10.1126/science.aat2663

Christopher E. Wilmer et al. Large-scale screening of hypothetical
metal-organic frameworks, Nature Chemistry (2011). DOL:
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