Human immune cells produced in a dish in world first

Human immune cells produced in a dish in world first
Credit: Murdoch Children's Research Institute (MCRI)

One day the advance could lead to a patient's own skin cells being used to produce new cells for cancer immunotherapy or to test autoimmune disease interventions.

The group, led by Professors Ed Stanley and Andrew Elefanty, from the Murdoch Children's Research Institute in Melbourne, Australia, said the work has added definitive evidence about how the body's earliest immune cells are formed.

These lymphocytes are produced by cells which form the embryo's first organs rather than the blood-producing that sit inside the body's bone marrow.

The research combined two powerful laboratory techniques, and a novel way of growing stem cells, to make the breakthrough, which has been published in the prestigious journal Nature Cell Biology.

First, the team engineered to glow green when a specific protein marker of early immune cells, RAG1, was switched on. RAG1 is responsible for creating the to infections and vaccines.

Next, the team isolated the glowing green RAG1-positive cells and showed that they could also form multiple immune cell types, including cells required for shaping the development of the whole immune system.

"We think these early cells might be important for the correct maturation of the thymus, the organ that acts as a nursery for T-cells" said Professor Stanley.

"These RAG1 cells are like the painters and decorators who set up that nursery, making it a safe and cosy environment for later-born immune cells," he said.

Professor Elefanty said, "Although a is likely still years away, we can use this new knowledge to test ideas about how diseases like childhood leukemia and type 1 diabetes develop. Understanding more about the steps these cells go through, and how we can more efficiently nudge them down a desired pathway, is going to be crucial to that process."


Explore further

How self-reactive immune cells are allowed to develop

More information: Ali Motazedian et al. Multipotent RAG1+ progenitors emerge directly from haemogenic endothelium in human pluripotent stem cell-derived haematopoietic organoids, Nature Cell Biology (2020). DOI: 10.1038/s41556-019-0445-8
Journal information: Nature Cell Biology

Citation: Human immune cells produced in a dish in world first (2020, January 8) retrieved 21 October 2020 from https://phys.org/news/2020-01-human-immune-cells-dish-world.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
625 shares

Feedback to editors

User comments