Stardust from red giants

Stardust from red giants
A red giant (AGB star) produces heavy elements such as molybdenum and palladium, which form dust (red squares), while elements like cadmium and some palladium escape as gas. Supernova explosions also produce heavier elements and eject them into space as dust (blue triangles) and gas. In the interstellar medium, the stardust mixes with dust grains formed there. In the disc made of gas and dust, more volatile dust grains close to the hot, young sun are destroyed. Stardust from red giants is more resilient than the other dust and so accumulates in regions closer to the sun. The young Jupiter served as a barrier preventing the mixing of material from the inner and regions. Credit: Mattias Ek/Maria Schönbächler

Some of the Earth's building material was stardust from red giants, researchers from ETH Zurich have established. They have also explained why the Earth contains more of this stardust than the asteroids or the planet Mars, which are farther from the sun.

Around 4.5 billion years ago, an interstellar molecular cloud collapsed. At its center, the sun formed; around that, a disc of gas and dust appeared, out of which the Earth and the other planets would form. This thoroughly mixed interstellar material included exotic grains of dust: "Stardust that had formed around other suns," explains Maria Schönbächler, a professor at the Institute of Geochemistry and Petrology at ETH Zurich and member of the NCCR PlanetS. These dust grains only made up a small percentage of the entire dust mass and were distributed unevenly throughout the disc. "The was like salt and pepper," the geochemist says. As the planets formed, each one ended up with its own mix.

Thanks to extremely precise measurement techniques, researchers are now able to detect the stardust that was present at the birth of our solar system. They examine specific chemical elements and measure the abundance of different isotopes—the atomic flavors of a given element, which all share the same number of protons in their nuclei but vary in the number of neutrons.

"The variable proportions of these isotopes act like a fingerprint," Schönbächler says. "Stardust has really extreme, unique fingerprints—and because it was spread unevenly through the protoplanetary disc, each planet and each asteroid got its own fingerprint when it was formed."

Studying palladium in meteorites

Over the past 10 years, researchers studying rock samples from the Earth and meteorites have been able to demonstrate these so-called isotopic anomalies for more and more elements. Schönbächler and her group have been looking at meteorites that were originally part of asteroid cores that were destroyed a long time ago, with a focus on the element palladium.

Other teams had already investigated neighboring elements in the , such as molybdenum and ruthenium, so Schönbächler's team could predict what their palladium results would show. But their laboratory measurements did not confirm the predictions. "The meteorites contained far smaller palladium anomalies than expected," says Mattias Ek, postdoc at the University of Bristol who made the isotope measurements during his doctoral research at ETH.

Now, the researchers have come up with a new model to explain these results, as they report in the journal Nature Astronomy. They argue that stardust consisted mainly of material that was produced in . These are aging stars that expand because they have exhausted the fuel in their core. Our sun, too, will become a red giant 4 or 5 billion years from now.

In these stars, heavy elements such as molybdenum and palladium were produced by what is known as the slow neutron capture process. "Palladium is slightly more volatile than the other elements measured. As a result, less of it condensed into dust around these stars, and therefore there is less from stardust in the meteorites we studied," Ek says.

The ETH researchers also have a plausible explanation for another stardust puzzle: the higher abundance of material from on Earth compared to Mars or Vesta or other asteroids further out in the solar system. This outer region saw an accumulation of material from supernova explosions.

"When the planets formed, temperatures closer to the sun were very high," Schönbächler explains. This caused unstable grains of dust, for instance, those with an icy crust, to evaporate. The contained more of this kind of dust that was destroyed close to the sun, whereas stardust from red giants was less prone to destruction and hence concentrated there. It is conceivable that dust originating in supernova explosions also evaporates more easily, since it is somewhat smaller. "This allows us to explain why the Earth has the largest enrichment of stardust from red giant stars compared to other bodies in the solar system," Schönbächler says.

More information: Mattias Ek et al. The origin of s-process isotope heterogeneity in the solar protoplanetary disk, Nature Astronomy (2019). DOI: 10.1038/s41550-019-0948-z

Journal information: Nature Astronomy

Provided by National Centre of Competence in Research PlanetS

Citation: Stardust from red giants (2019, December 10) retrieved 19 March 2024 from https://phys.org/news/2019-12-stardust-red-giants.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Closer look at supernova dust suggests there's more of it than previously assumed

168 shares

Feedback to editors