A matchmaker for microbiomes

Science snapshots from Berkeley Lab
Trent Northen, a Berkeley Lab co-author, analyzes a microbiome sample. Credit: Roy Kaltschmidt/Berkeley Lab

Microbiomes play essential roles in the natural processes that keep the planet and our bodies healthy, so it's not surprising that scientists' investigations into these diverse microbial communities are leading to advances in medicine, sustainable agriculture, cheap water purification methods, and environmental cleanup technology, just to name a few. However, trying to determine which microbes contribute to an important geochemical or physiological reaction is both incredibly challenging and slow-going, because the task involves analyzing enormous datasets of genetic and metabolic information to match the compounds mediating a process to the microbes that produced them.

But now, researchers have devised a new way to sort through the .

Writing in Nature Methods, a team led by UC San Diego describes a -based approach called microbe-metabolite vectors (mmvec), which uses probabilities to identify the most likely relationship of co-occurring microbes and metabolites. The team demonstrates how mmvec can outperform traditional correlation-based approaches by applying mmvec to datasets from two well-studied microbiomes types—those found in desert soils and cystic fibrosis patients' lungs—and gives a taste of how the approach could be used in the future by revealing relationships between microbially-produced metabolites and .

"Previous statistical tools used to estimate microbe-metabolite correlations performed comparably to random chance," said Marc Van Goethem, a postdoctoral researcher who is one of three study authors from Berkeley Lab. "Their led to the detection of spurious relationships and missed many true relationships. Mmvec is a powerful new tool that accurately links metabolite and microbial abundances to solve this problem. There could be wide-ranging applications from clinical trials to environmental engineering. Ultimately, mmvec will allow us to begin moving away from simple pattern recognition towards unravelling mechanisms."

Explore further

Real world native biocrusts: Microbial metabolism

More information: James T. Morton et al. Learning representations of microbe–metabolite interactions, Nature Methods (2019). DOI: 10.1038/s41592-019-0616-3
Journal information: Nature Methods

Citation: A matchmaker for microbiomes (2019, December 2) retrieved 18 April 2021 from https://phys.org/news/2019-12-matchmaker-microbiomes.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments