
 

CMU becomes go-to place for machine
learning in catalysis research
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Catalysts create change.

Many a middle school science teacher has dripped a few drops of
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potassium iodide into hydrogen peroxide and watched the delight of
their students as a volcano of foam erupted from the container. This
experiment is often the way young people first learn about catalysts as
something that that can induce a chemical reaction.

But catalysts can make more than foam. As those young people grow
into young scientists, they learn that catalysis—the acceleration of a
chemical reaction by a catalyst—is a key process in the creation of just
about everything. From the plastics that make up our medical
equipment, to the gasoline in our cars, to the paint that colors our
homes—none of these could exist without catalysts.

Catalysts come in all shapes and sizes, and each one serves a different
function. The discovery of new catalysts often means that we are able to
create and perfect new materials, which can be used in future products,
fuels, and just about everything else. Unfortunately, discovering and
optimizing these new catalysts can be a long and difficult process,
involving an unruly number of variables. The difficulty of this process is
one of the primary barriers to new catalyst discovery.

For this reason, Carnegie Mellon chemical engineers have recently
begun to look to other fields for answers. Recently, both the Department
of Energy and the National Science Foundation have invested in the
unique research that Zachary Ulissi, John Kitchin, and Andrew
Gellman are pioneering, which looks into the role that machine learning
can play in the discovery of new catalysts. Through the development and
implementation of novel machine learning algorithms, the rate at which
researchers can discover new, effective catalysts will increase
exponentially.

Optimum alloy composition for catalytic surfaces

Hydrogen fuel cells are powered by catalytic reactions—in particular, by
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what's known as an alloy catalyst surface. The efficiency of the fuel cell
is dependent on the exact mix of metals that make up that alloy catalyst
surface. But finding that perfect mix isn't easy. That's why ChemE
Professor John Kitchin, with support from the National Science
Foundation, has developed a unique machine learning algorithm to
rapidly test as many combinations as possible. His findings are detailed
in his paper, "Modeling Segregation on AuPd(111) Surfaces with
Density Functional Theory and Monte Carlo Simulations," published in
the Journal of Physical Chemistry.

Metal alloys are used as catalysts to produce hydrogen peroxide from
hydrogen and oxygen for use as a renewable green oxidant in chemical
synthesis. In the case of Kitchin's research, that alloy is made up of gold
(Au) and palladium (Pd). When the palladium reacts with the hydrogen
and oxygen in the reactor, it creates hydrogen peroxide, which can be
used as an oxidant. Unfortunately, through this reaction, palladium also
creates water, which is undesirable for the because it wastes the valuable
hydrogen. By alloying gold with the palladium, this secondary reaction
can be mitigated, causing the reactor to create more of the desired
hydrogen peroxide. But just how well the alloy is able to do this is
dependent on the exact ratio of Au to Pd in the catalyst—down to the
atom. Checking every possible ratio by hand would take far more time
than any group of researchers would be able to spend.

"Our research has developed a unique machine learning algorithm to
simulate the composition of a surface so that we can estimate and
determine the atomic-scale distribution of atoms in the surface," Kitchin
says. "In any simulation of catalysis on metal surfaces, the results depend
on the details of the surface that is being modeled. If the modeled
surface is not representative of what the surface would look like in the
experiment, then the simulation results are also not going to be
representative of what could be observed experimentally. Our research
provides a starting point to get a more realistic model of the surface for
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simulating catalysis that is relevant to experimental observations."

Intermetallics vs. alloys in the quest for efficiency 

Alloy catalyst surfaces have a number of applications in chemical
engineering—but they are not the only metal catalysts widely used for 
chemical reactions. Intermetallics are similar to alloys, but instead of the
atoms being randomly mixed, intermetallics are created by specifically
placing atoms of one metal in a repeating pattern with the atoms of
another. Because of their precise atomic composition, intermetallics can
be customized specifically to catalyze a particular reaction.

But because atomic placement in intermetallics is so precise, optimizing
the arrangement for maximum catalytic effect is an arduous process.
Experimentation to develop better intermetallics largely relies on the
'guess and check' method. So in order to create a more efficient method,
ChemE Assistant Professor Zack Ulissi, along with his collaborators at
Penn State, are working to develop a computational tool that uses
machine learning to not only model intermetallic configurations and test
them for efficiency, but uses the data gathered from these experiments
to decide what configurations are more likely to work in the future. The
research is supported by a $1.2 million dollar grant from the U.S.
Department of Energy.

"The field of catalysis is embracing machine learning to help solve
challenges that have eluded us until now," says Ulissi. "But, most of the
early successes have been purely on the computational side—helping us
to better understand the catalysts we already know about. But this
project is all about developing new methods and tools to accelerate the
composition design process."

Experimental tools to confirm machine learning
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models

While machine learning is a powerful tool, the ability to experimentally
confirm the results of machine learning models is paramount to ensuring
their reliability. That's why Professor Andrew Gellman and his research
group have developed experimental methods to complement the machine
learning tools developed by Kitchin and Ulissi. The National Science
Foundation, through its Designing Materials to Revolutionize and
Engineer Our Future (DMREF) initiative, has invested in a team led by
Gellman to pioneer brand-new research tools, which can prepare
hundreds of alloy compositions simultaneously and concurrently analyze
their surfaces.

These tools work by identifying the optimal composition of two or three
component alloys, and comparing them to the compositions predicted by
machine learning. These component alloys can then be experimentally
tested in the lab to confirm that they operate as the machine learning
model says they do. Then, once the experiment has corroborated the
predictions of the model for several binary and ternary alloys, the
optimal compositions of other alloys with different components can be
reliably identified on the basis of the machine learning methods alone. 

Carnegie Mellon researchers are at the forefront of machine learning for
catalysis, and the breadth and depth of this research is always expanding.
Students from all over the world come to the department of Chemical
Engineering to study this exciting, emerging field. New projects are
being funded every day, including a recent ARPA-E grant to support
Gellman and Ulissi in studying deep reinforcement learning in catalysis.
Thanks to the advanced collaboration of these faculty, students, and
foundations, CMU ChemE is poised to bring unprecedented change to
the field of catalysis discovery.

  More information: Jacob R. Boes et al. Modeling Segregation on
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