
 

Machine learning-assisted molecular design
for high-performance organic photovoltaic
materials
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Using machine learning to assist molecular design. Credit: Wenbo Sun, Science
Advances, doi: 10.1126/sciadv.aay4275

To synthesize high-performance materials for organic photovoltaics
(OPVs) that convert solar radiation into direct current, materials
scientists must meaningfully establish the relationship between chemical
structures and their photovoltaic properties. In a new study on Science
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https://www.sciencedirect.com/science/article/pii/S1369702113700130
https://www.sciencedirect.com/topics/materials-science/photovoltaics


 

Advances, Wenbo Sun and a team including researchers from the School
of Energy and Power Engineering, School of Automation, Computer
Science, Electrical Engineering and Green and Intelligent Technology,
established a new database of more than 1,700 donor materials using
existing literature reports. They used supervised learning with machine
learning models to build structure-property relationships and fast screen
OPV materials using a variety of inputs for different ML algorithms.

Using molecular fingerprints (encoding a structure of a molecule in
binary bits) beyond a length of 1000 bits Sun et al. obtained high ML
prediction accuracy. They verified the reliability of the approach by
screening 10 newly designed donor materials for consistency between 
model predictions and experimental outcomes. The ML results presented
a powerful tool to prescreen new OPV materials and accelerate the
development of OPVs in materials engineering.

Organic photovoltaic (OPV) cells can facilitate direct and cost-effective
transformation of solar energy into electricity with rapid recent growth
to exceed power conversion efficiency (PCE) rates. Mainstream OPV
research has focused on building a relationship between new OPV
molecular structures and their photovoltaic properties. The traditional
process typically involves the design and synthesis of photovoltaic
materials for the assembly/optimization of photovoltaic cells. Such
approaches result in time consuming research cycles that require delicate
control of chemical synthesis and device fabrication, experimental steps
and purification. The existing OPV development process is slow and
inefficient with less than 2000 OPV donor molecules synthesized and
tested so far. However, the data gathered from decades of research work
are priceless, with potential values remaining to be fully explored to
generate high-performance OPV materials.
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https://www.sciencedirect.com/topics/computer-science/supervised-learning
https://openbabel.org/docs/dev/Fingerprints/intro.html
https://phys.org/tags/model/
https://phys.org/search/?search=materials+engineering
https://www.nature.com/articles/s41467-019-10351-5
https://phys.org/tags/molecules/
https://aip.scitation.org/doi/abs/10.1063/1.1662650
https://aip.scitation.org/doi/abs/10.1063/1.1662650


 

  

Information about the database of OPV donor materials. (A) Distribution of
PCE values of the 1719 molecules in the database. (B) Schematics of expressions
of a molecule, including image, simplified molecular-input line-entry system
(SMILES), and fingerprints. Credit: Science Advances, doi:
10.1126/sciadv.aay4275

To extract useful information from the data, Sun et al. required a
sophisticated program to scan through a large dataset and extract
relationships from among the features. Since machine learning (ML)
provides computational tools to learn and recognize patterns and
relationships using a training dataset, the team used a data-driven
approach to enable ML and predict diverse material properties. The ML
algorithm did not have to understand the chemistry or physics behind the
materials properties to accomplish the tasks. Similar methods have
recently predicted the activity/properties of materials successfully during
materials discovery, drug development and materials design. Prior to ML
applications, scientists had generated cheminformatics to establish a
useful toolbox.
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https://www.sciencedirect.com/topics/earth-and-planetary-sciences/machine-learning
https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging/volume-16/issue-4/049901/Pattern-Recognition-and-Machine-Learning/10.1117/1.2819119.short?SSO=1
https://mitpress.mit.edu/books/introduction-machine-learning
https://pubs.acs.org/doi/abs/10.1021/acsnano.8b04726
https://www.nature.com/articles/ncomms15679
https://www.nature.com/articles/nmat4717/
https://www.nature.com/articles/nmat4717/
https://www.nature.com/articles/s41467-018-05761-w
https://www.springer.com/gp/book/9781402013478


 

Materials scientists have only recently explored the applications of ML
in the OPV field. In the present work, Sun et al. established a database
containing 1719 experimentally tested donor OPV materials gathered
from literature. They studied the importance of programming language
expression of the molecules first to understand ML performance. They
then tested several different types of expressions including images, 
ASCII strings, two types of descriptors and seven types of molecular
fingerprints. They observed the model predictions to be in good
agreement with the experimental results. The scientists expect the new
approach to greatly accelerate the development of new and highly
efficient organic semiconducting materials for OPV research
applications.

The research team first transformed the raw data into a machine
readable representation. A variety of expressions exist for the same
molecule comprising vastly different chemical information presented at
different abstract levels. Using a set of ML models, Sun et al. explored
diverse expressions of a molecule by comparing their predicted accuracy
for power conversion efficiency (PCE) to obtain a deep-learning model
accuracy of 69.41 percent. The relatively unsatisfactory performance
was due to the small size of the database. For instance, previously when
the same group used a larger number of molecules of up to 50,000, the
accuracy of the deep-learning model exceeded 90 percent. To fully train
a deep-learning model, researchers must implement a larger database
containing millions of samples.
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https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201801032
https://www.sciencedirect.com/topics/mathematics/ascii-code
https://www.nature.com/articles/s41598-018-27344-x
https://www.nature.com/articles/s41598-018-27344-x
https://www.nature.com/articles/nature14539
https://www.nature.com/articles/nature14539
https://onlinelibrary.wiley.com/doi/abs/10.1002/adts.201970001
https://ieeexplore.ieee.org/abstract/document/7426826/
https://ieeexplore.ieee.org/abstract/document/7426826/


 

  

Testing results of ML models. (A) Testing of the deep learning model using
images as input. (B to D) Testing results of different ML models using (B)
SMILES, (C) PaDEL, and (D) RDKIt descriptors as input. Credit: Science
Advances, doi: 10.1126/sciadv.aay4275

Sun et al. only had hundreds of molecules in each category at present,
making it difficult for the model to extract enough information for
higher accuracy. While it is possible to fine-tune a pre-trained model to
reduce the amount of data required, thousands of samples are still
necessary to accomplish a sufficient number of features. This led to the
option of increasing the size of the database when using images to
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express molecules.

The scientists used five types of supervised ML algorithms in the study,
including (1) back propagation (BP) neural network (BPNN), (2) deep
neural network (DNN), (3) deep learning, (4) support vector machine
(SVM) and (5) random forest (RF). These were advanced algorithms,
where BPNN, DNN and deep learning were based on the artificial
neutral network (ANN). The SMILES code (simplified molecular-input
line entry system) provided another original expression of a molecule,
which Sun et al. used as inputs for four models. Based on the results, the
highest accuracy approximated 67.84 percent for the RF model. As
before, unlike with deep learning, the four classical methods could not
extract hidden features. As a whole, SMILES performed worse than
images as descriptors of molecules to predict the PCE (power conversion
efficiency) class in the data.

The researchers then used molecular descriptors that can describe the
properties of a molecule using an array of numbers instead of the direct
expression of a chemical structure. The research team used two types of
descriptors PaDEL and RDKIt in the study. After extensive analyses
across all ML models, a large data size implied more descriptors
irrelevant to PCE affecting the ANN performance. Comparatively, a
small data size implied inefficient chemical information to effectively
train ML models, when using molecular descriptors as input in ML
approaches, the key relied on finding appropriate descriptors that
directly related to the target object.
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Performance of ML models. (A to D) The testing results of (A) BPNN, (B)
DNN, (C) RF, and (D) SVM using different types of fingerprints as input.
Credit: Science Advances, doi: 10.1126/sciadv.aay4275.

The team next used molecular fingerprints; typically designed to
represent molecules as mathematical objects and originally created to
identify isomers. During large-scale database screening, the concept is 
represented as an array of bits containing "1" s and "0" s to describe the
presence or absence of specific substructures or patterns within the
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https://www.nature.com/articles/s41598-018-27344-x
https://pubs.acs.org/doi/abs/10.1021/c160017a018
https://pubs.acs.org/doi/abs/10.1021/c160017a018
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molecules. Sun et al. used seven types of fingerprints as inputs to train
the ML models and considered the influence of the fingerprint length on
the prediction performance of different models to obtain diverse
fingerprints. For instance, molecular access system (MACCS)
fingerprints contained 166 bits and were the shortest input and the
results were unsatisfactory due to their limited information.

Sun et al. showed the best combination of programming language and
ML algorithm obtained using Hybridization fingerprints of 1024 bits and
RF, to achieve a prediction accuracy of 81.76 percent; where
Hybridization fingerprints represented SP2 hybridization states of
molecules. When the fingerprint length increased from 166 to 1024 bits,
the performance of all ML models improved since longer fingerprints
included more chemical information.
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293704/
https://pubs.acs.org/doi/abs/10.1021/ci025584y
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759849/


 

  

Verification of ML models with experiment. (A) Comparison of the results from
four different models. (B) Schematic diagram of the cell architecture used in this
study. (C) J-V curve of the solar cell with the active layer using the predicted
donor material. (D) Prediction results versus experimental data for the predicted
donor materials with the RF algorithm and Daylight fingerprints. Credit: Science
Advances, doi: 10.1126/sciadv.aay4275.

To test the reliability of the ML models, Sun et al. synthesized 10 new
OPV donor molecules. Then used three representative fingerprints to
express the chemical structure of the new molecules and compared the
results predicted by the RF model and the experimental PCE values. The
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system classified eight of the 10 molecules. The results indicated the
potential of the synthetic materials for OPV applications with additional
experimental optimization for two of the new materials. A minor change
in structure could cause a large difference in PCE values. Encouragingly,
the ML models identified such minor modifications to facilitate
favorable prediction results.

In this way, Wenbo Sun and colleagues used a literature database on
OPV donor materials and a variety of programming language
expressions (images, ASCII strings, descriptors and molecular
fingerprints) to build ML models and predict the corresponding OPV
PCE class. The team demonstrated a scheme to design OPV donor
materials using ML approaches and experimental analysis. They
prescreened a large number of donor materials using the ML model to
identify leading candidates for synthesis and further experiments. The
new work can speed up new donor material design to accelerate the
development of high PCE OPVs. The use of ML in conjunction with
experiments will progress materials discovery.

  More information: Yann LeCun et al. Deep learning, Nature (2015). 
DOI: 10.1038/nature14539 

Lingxian Meng et al. Organic and solution-processed tandem solar cells
with 17.3% efficiency, Science (2018). DOI: 10.1126/science.aat2612

Wenbo Sun et al. Machine learning–assisted molecular design and
efficiency prediction for high-performance organic photovoltaic
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